Skip to main content
Log in

Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Based on a recent result on linking stochastic differential equations on ℝd to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional approximations to characterize the path-independence of the density process of Girsanov transformation for the infinite-dimensional stochastic evolution equations. Our result provides a link of infinite-dimensional semi-linear stochastic differential equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial differential equations. As an application, this characterization result is applied to stochastic heat equation in one space dimension over the unit interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S, Molchanov S A, Surgailis D. Stratified structure of the Universe and Burgers’ equation: A probabilistic approach. Probab Theory Related Fields, 1994, 100: 457–484

    Article  MATH  MathSciNet  Google Scholar 

  2. Black F, Scholes M. The pricing of options and corporate liabilities. J Political Economy, 1973, 81(3): 637–654

    Article  Google Scholar 

  3. Burgers J M. The Nonlinear Diffusion Equations. Boston: Reidel, 1974

    Book  Google Scholar 

  4. Chow P L. Stochastic Partial Differential Equations. Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series. Boca Raton: Chapman and Hall/CRC, 2007

    Google Scholar 

  5. Cox J C, Leland H E. On dynamic investment strategies. In: Proceedings of the Seminar on the Analysis of Security Prices. Centre for Research in Security Prices, University of Chicago, 1982

    Google Scholar 

  6. Crandall M G, Ishii H, Lions P L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc (N S), 1992, 27(1): 1–67

    Article  MATH  MathSciNet  Google Scholar 

  7. Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press, 1992

    Book  Google Scholar 

  8. Da Prato G, Zabczyk J. Ergodicity for Infinite-dimensional Systems. London Mathematical Society Lecture Note Series, Vol 229. Cambridge: Cambridge University Press, 1996

    Book  MATH  Google Scholar 

  9. Dafermos C M. Hyperbolic Conservation Laws in Continuum Physics. 2nd ed. Heidelberg: Springer-Verlag, 2005

    MATH  Google Scholar 

  10. Elworthy D K, Truman A. The diffusion equation and classical mechanics: An elementary formula. In: Albeverio S, et al, eds. Stochastic Processes in Quantum Physics. Lecture Notes in Physics, Vol 173. Berlin: Springer-Verlag, 1982, 136–146

    Chapter  Google Scholar 

  11. Fleming W H, Soner H M. Controlled Markov Processes and Viscosity Solutions. 2nd ed. Stochastic Modelling and Applied Probability, Vol 25. New York: Springer, 2006

    MATH  Google Scholar 

  12. Freidlin M I. Functional Integration and Partial Differential Equations. Ann Math Stud, Vol 109. Princeton: Princeton University Press, 1985

    MATH  Google Scholar 

  13. Gong F Z, Ma Z M. Invariance of Malliavin fields on it’s Wiener space and on abstract Wiener space. J Funct Anal, 1996, 138(2): 449–476

    Article  MATH  MathSciNet  Google Scholar 

  14. Handa K. On a stochastic PDE related to Burgers equation with noise. In: Funaki T, Woyczynski W A, eds. Hydrodynamic Limit and Burgers’ Turbulence. Berlin, Heidelberg, New York: Springer-Verlag, 1996

    Google Scholar 

  15. Hodges S, Carverhill A. Quasi mean reversion in an efficient stock market: the characterisation of economic equilibria which support Black-Scholes Option pricing. Economic J, 1993, 103: 395–405

    Article  Google Scholar 

  16. Hodges S, Liao C H. Equilibrium Price Processes, Mean Reversion and Consumption Smoothing. Working paper, 2004

    Google Scholar 

  17. Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes. 2nd ed. Amsterdam and Tokyo: North-Holland and Kodansha Ltd, 1989

    MATH  Google Scholar 

  18. Kardar M P, Parisi G, Zhang Y -C. Dynamic scaling of growing interfaces. Phys Rev Lett, 1986, 56: 889–892

    Article  MATH  Google Scholar 

  19. Krug J, Spohn H. Kinetic roughening of growing surfaces. In: Godréche C, ed. Solids Far from Equilibrium: Growth Morphology and Defects. Cambridge: Cambridge University Press, 1991, 412–525

    Google Scholar 

  20. Majda A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Math Sci, No 53. New York: Springer-Verlag, 1984

    Book  MATH  Google Scholar 

  21. Majda A, Timofeyev I. Remarkable statistical behavior for truncated Burgers-Hopf dynamics. Proc Natl Acad Sci USA, 2000, 97: 12413–12417

    Article  MATH  MathSciNet  Google Scholar 

  22. Malliavin P, Thalmaier A. Stochastic Calculus of Variations in Mathematical Finance. Springer Finance. Berlin: Springer-Verlag, 2006

    Google Scholar 

  23. Øksendal B. Stochastic Differential Equations. An Introduction with Applications. 6th ed. Universitext. Berlin: Springer-Verlag, 2003

    Google Scholar 

  24. Prévôt C, Röckner M. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, Vol 1905. Berlin: Springer, 2007

    MATH  Google Scholar 

  25. Smoller J. Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1994

    Book  MATH  Google Scholar 

  26. Spohn H. Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Berlin-Heidelberg-New York: Springer-Verlag, 1991

    Book  Google Scholar 

  27. Stein E M, Stein J C. Stock price distributions with stochastic volatility: an analytic approach. Rev Financial Studies, 1991, 4(4): 727–752

    Article  Google Scholar 

  28. Stroock D W, Varadhan S R S. Multidimensional Diffusion Processes. Grundlehren der mathematischen Wissenschaften, Vol 233. Berlin: Springer-Verlag, 1979

    MATH  Google Scholar 

  29. Truman A. Classical mechanics, the diffusion (heat) equation, and the Schrödinger equation. J Math Phys, 1977, 18: 2308–2315

    Article  MATH  MathSciNet  Google Scholar 

  30. Truman A, Wang F -Y, Wu J -L, Yang W. A link of stochastic differential equations to nonlinear parabolic equations. Sci China Math, 2012, 55(10): 1971–1976

    Article  MATH  MathSciNet  Google Scholar 

  31. Truman A, Zhao H Z. The stochastic Hamilton Jacobi equation, stochastic heat equation and Schrödinger equation. In: Davies I M, Truman A, Elworthy D K, eds. Stochastic Analysis and Applications. Singapore: World Scientific, 1996, 441–464

    Google Scholar 

  32. Truman A, Zhao H Z. On stochastic diffusion equations and stochastic Burgers equations. J Math. Phys, 1996, 37: 283–307

    Article  MATH  MathSciNet  Google Scholar 

  33. Truman A, Zhao H Z. Stochastic Burgers equations and their semi-classical expansions. Comm Math Phys, 1998, 194: 231–248

    Article  MATH  MathSciNet  Google Scholar 

  34. Walsh J B. An Introduction to Stochastic Partial Differential Equations. In: Carmona R, Kesten H, Walsh J B, et al, eds. École d’Été de Probabilitiés de Sanit Flour, XIV-1984. Lecture Notes in Mathematics, Vol 1180. Berlin: Springer-Verlag, 1986, 265–439

    Chapter  Google Scholar 

  35. Wang F -Y. Harnack Inequalities for Stochastic Partial Differential Equations. Springer Briefs in Mathematics. New York: Springer, 2013

    Book  MATH  Google Scholar 

  36. Woyczynski W A. Burgers-KPZ Turbulence. Göttingen lectures. Lecture Notes in Mathematics, Vol 1700. Berlin: Springer-Verlag, 1998

    MATH  Google Scholar 

  37. Wu J -L, Yang W. On stochastic differential equations and a generalised Burgers equation. In: Zhang T, Zhou X Y, eds. Stochastic Analysis and Applications to Finance -Festschrift in Honor of Professor Jia-An Yan. Interdisciplinary Mathematical Sciences, Vol 13. Hackensck: World Scientific Publ, 2012, 425–435

    Chapter  Google Scholar 

  38. Yong J, Zhou X Y. Stochastic Controls: Hamiltonian Systems and HJB Equations. Applications of Mathematics-Stochastic Modelling and Applied Probability, Vol 43. New York: Springer-Verlag, 1999

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Lun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Wu, JL. Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations. Front. Math. China 9, 601–622 (2014). https://doi.org/10.1007/s11464-014-0364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-014-0364-8

Keywords

MSC

Navigation