Skip to main content
Log in

Integrable discretizations of the Dym equation

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Integrable discretizations of the complex and real Dym equations are proposed. N-soliton solutions for both semi-discrete and fully discrete analogues of the complex and real Dym equations are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dmitrieva L A. N-loop solitons and their link with the complex Harry Dym equation. J Phys A: Math Gen, 1994, 27: 8197–8205

    Article  MathSciNet  MATH  Google Scholar 

  2. Feng B-F, Inoguchi J, Kajiwara K, Maruno K, Ohta Y. Discrete integrable systems and hodograph transformations arising from motions of discrete plane curves. J Phys A: Math Theor, 2011, 44: 395201

    Article  MathSciNet  Google Scholar 

  3. Feng B-F, Maruno K, Ohta Y. A self-adaptive moving mesh method for the Camassa-Holm equation. J Comp Appl Math, 2010, 235: 229–243

    Article  MathSciNet  MATH  Google Scholar 

  4. Goldstein R E, Petrich D M. The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys Rev Lett, 1991, 67: 3203–3206

    Article  MathSciNet  MATH  Google Scholar 

  5. Hereman W, Banerjee P P, Chatterjee M R. Derivation and implicit solution of the Harry Dym equation and its connections with the Korteweg-de Vries equation. J Phys A: Math Gen, 1989, 22: 241–255

    Article  MathSciNet  MATH  Google Scholar 

  6. Inoguchi J, Kajiwara K, Matsuura N, Ohta Y. Motion and Bäcklund transformations of discrete plane curves. Kyushu J Math, 2012, 66: 303–324

    Article  MathSciNet  MATH  Google Scholar 

  7. Inoguchi J, Kajiwara K, Matsuura N, Ohta Y. Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves. J Phys A: Math Theor, 2012, 45: 045206

    Article  MathSciNet  Google Scholar 

  8. Ishimori Y. A relationship between the Ablowitz-Kaup-Newell-Segur and Wadati-Konno-Ichikawa schemes of the inverse scattering method. J Phys Soc Jpn, 1982, 51: 3036–3041

    Article  MathSciNet  Google Scholar 

  9. Kadanoff L P. Exact solutions for the Saffman-Taylor problem with surface tension. Phys Rev Lett, 1990, 65: 2986–2988

    Article  Google Scholar 

  10. Kawamoto S. An exact transformation from the Harry Dym equation to the modified KdV equation. J Phys Soc Jpn, 1985, 54: 2055–2056

    Article  MathSciNet  Google Scholar 

  11. Kruskal M D. Nonlinear wave equations. In: Moser J, ed. Dynamical Systems, Theory and Applications. Lecture Note in Physics, Vol 38. New York: Springer-Verlag, 1975, 310–354

    Chapter  Google Scholar 

  12. Ohta Y, Maruno K, Feng B -F. An integrable semi-discretization of the Camassa-Holm equation and its determinant solution. J Phys A: Math Theor, 2008, 41: 355205

    Article  MathSciNet  Google Scholar 

  13. Rogers C, Wong P. On reciprocal Bäcklund transformations of inverse scattering schemes. Physica Scripta, 1984, 330: 10–14

    Article  MathSciNet  MATH  Google Scholar 

  14. Wadati M, Konno K, Ichikawa Y H. New integrable nonlinear evolution equations. J Phys Soc Jpn, 1979, 47: 1698–1700

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Feng Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, BF., Inoguchi, Ji., Kajiwara, K. et al. Integrable discretizations of the Dym equation. Front. Math. China 8, 1017–1029 (2013). https://doi.org/10.1007/s11464-013-0321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-013-0321-y

Keywords

MSC

Navigation