Skip to main content
Log in

Speed of stability for birth-death processes

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

This paper is a continuation of the study on the stability speed for Markov processes. It extends the previous study of the ergodic convergence speed to the non-ergodic one, in which the processes are even allowed to be explosive or to have general killings. At the beginning stage, this paper is concentrated on the birth-death processes. According to the classification of the boundaries, there are four cases plus one more having general killings. In each case, some dual variational formulas for the convergence rate are presented, from which, the criterion for the positivity of the rate and an approximating procedure of estimating the rate are deduced. As the first step of the approximation, the ratio of the resulting bounds is usually no more than 2. The criteria as well as basic estimates for more general types of stability are also presented. Even though the paper contributes mainly to the non-ergodic case, there are some improvements in the ergodic one. To illustrate the power of the results, a large number of examples are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen A, Pollett P, Zhang H, Cairns B. Uniqueness criteria for continuous-time Markov chains with general transition structure. Adv Appl Prob, 2005, 37(4): 1056–1074

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen M F. Exponential L 2-convergence and L 2-spectral gap for Markov processes. Acta Math Sin (New Ser), 1991, 7(1): 19–37

    Article  MATH  Google Scholar 

  3. Chen M F. Estimation of spectral gap for Markov chains. Acta Math Sin (New Ser), 1996, 12(4): 337–360

    Article  MATH  Google Scholar 

  4. Chen M F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci in China, A, 1999, 42(8): 805–815

    Article  MATH  Google Scholar 

  5. Chen M F. The principal eigenvalue for jump processes. Acta Math Sin (Eng Ser), 2000, 16(3): 361–368

    Article  MATH  Google Scholar 

  6. Chen M F. Explicit bounds of the first eigenvalue. Sci Chin, Ser A, 2000, 43(10): 1051–1059

    Article  MATH  Google Scholar 

  7. Chen M F. Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci Chin, Ser A, 2001, 44(4): 409–418

    Article  MATH  Google Scholar 

  8. Chen M F. Ergodic Convergence Rates of Markov Processes-Eigenvalues, Inequalities and Ergodic Theory. 2001. [Collection of papers, 1993-] http://math.bnu.edu.cn/~chenmf/main_eng.htm

  9. Chen M F. Variational formulas of Poincaré-type inequalities for birth-death processes. Acta Math Sin (Eng Ser), 2003, 19(4): 625–644

    Article  MATH  Google Scholar 

  10. Chen M F. From Markov Chains to Non-equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2004

    MATH  Google Scholar 

  11. Chen M F. Capacitary criteria for Poincaré-type inequalities. Potential Theory, 2005, 23(4): 303–322

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005

    MATH  Google Scholar 

  13. Chen M F, Wang F Y. Estimation of spectral gap for elliptic operators. Trans Amer Math Soc, 1997, 349(3): 1239–1267

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen M F, Wang F Y. Cheeger’s inequalities for general symmetric forms and existence criteria for spectral gap. (Abstract) Chin Sci Bull, 1998, 43(18): 1516–1519; Ann Prob, 2000, 28(1): 235–257

    Article  MATH  Google Scholar 

  15. Chen M F, Zhang Y H, Zhao X L. Dual variational formulas for the first Dirichlet eigenvalue on half-line. Sci China, Ser A, 2003, 46(6): 847–861

    Article  MATH  MathSciNet  Google Scholar 

  16. Cox J T, Rösler U. A duality relation for entrance and exit laws for Markov processes. Stoch Proc Appl, 1983, 16: 141–156

    Article  Google Scholar 

  17. Dobrushin R L. On conditions of regularity of stationary Markov processes with a denumerable number of possible states. Uspehi Matem Nauk (NS), 1952, 7(6): 185–191 (in Russian)

    MATH  Google Scholar 

  18. Fukushima M, Uemura T. Capacitary bounds of measures and ultracontractivity of time changed processes. J Math Pure et Appliquees, 2003, 82(5): 553–572

    Article  MATH  MathSciNet  Google Scholar 

  19. Hou Z T, Liu Z M, Zhang H J, Li J P, Zhou J Z, Yuan C G. Birth-death Processes. Changsha: Hunan Sci and Tech Press, 2000 (in Chinese)

    Google Scholar 

  20. Hou Z T, Zhou J Z, Zhang H J, Liu Z M, Xiao G N, Chen A Y, Fei Z L. The Q-matrix Problem for Markov Chains. Changsha: Hunan Sci and Tech Press, 1994 (in Chinese)

    Google Scholar 

  21. Jin H Y. Estimating the constant in Lp-Poincaré inequality. Master Thesis. Beijing: Beijing Normal Univ, 2006 (in Chinese)

    Google Scholar 

  22. Karlin S, McGregor J L. The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans Amer Math Soc, 1957, 85: 589–646

    Article  MathSciNet  Google Scholar 

  23. Karlin S, McGregor J. The classification of birth and death processes. Trans Amer Math Soc, 1957, 86(2): 366–400

    Article  MATH  MathSciNet  Google Scholar 

  24. Kijima M. Markov Processes for Stochastic Modeling. London: Chapman & Hall, 1997

    MATH  Google Scholar 

  25. Mao Y H. Nash inequalities for Markov processes in dimension one. Acta Math Sin (Eng Ser), 2002, 18(1): 147–156

    Article  MATH  Google Scholar 

  26. Mao Y H, Xia L Y. Spectral gap for jump processes by decomposition method. Front Math China, 2009, 4(2): 335–347

    Article  MATH  MathSciNet  Google Scholar 

  27. Maz’ya V G. Sobolev Spaces. Berlin: Springer, 1985

    Google Scholar 

  28. Miclo L. An example of application of discrete Hardy’s inequalities. Markov Processes Relat Fields, 1999, 5: 319–330

    MATH  MathSciNet  Google Scholar 

  29. Muckenhoupt B. Hardy’s inequality with weights. Studia Math, 1972, XLIV: 31–38

    MathSciNet  Google Scholar 

  30. Opic B, Kufner A. Hardy-type Inequalities. New York: Longman, 1990

    MATH  Google Scholar 

  31. Shao J H, Mao Y H. Estimation of the Dirichlet eigenvalue of birth-death process on trees. Acta Math Sin (Chinese Ser), 2007, 50(3): 507–516 (in Chinese)

    MATH  MathSciNet  Google Scholar 

  32. Shiozawa Y, Takeda M. Variational formula for Dirichlet forms and estimates of principal eigenvalues for symmetric α-stable processes. Potential Analysis, 2005, 23: 135–151

    Article  MATH  MathSciNet  Google Scholar 

  33. Sirl D, Zhang H, Pollett P. Computable bounds for the decay parameter of a birth-death process. J Appl Prob, 2007, 44(2): 476–491

    Article  MATH  MathSciNet  Google Scholar 

  34. van Doorn E A. Stochastic Monotonicity and Queuing Applications of Birth-Death Processes. Lecture Notes in Statistics, Vol 4. Berlin: Springer-Verlag, 1981

    Google Scholar 

  35. van Doorn E A. Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process. Adv Appl Prob, 1985, 17: 514–530

    Article  MATH  Google Scholar 

  36. van Doorn E A. Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices. J Approx Th, 1987, 51: 254–266

    Article  MATH  Google Scholar 

  37. van Doorn E A. Representations for the rate of convergence of birth-death processes. Theory Probab Math Statist, 2002, 65: 37–43

    Google Scholar 

  38. Wang J. First Dirichlet eigenvalue of transient birth-death processes. 2008, preprint

  39. Wang J. Poincaré-type inequalities for transient birth-death processes. 2008, preprint

  40. Wang J. Functional inequalities for transient birth-death processes and their applications. 2008, preprint

  41. Wang Z K. The ergodicity and zero-one law for birth and death processes. Acta Sci Nankai Univ, 1964, 5(5): 93–102 (in Chinese)

    Google Scholar 

  42. Wang Z K, Yang X Q. Birth and Death Processes and Markov Chains. Berlin: Springer and Beijing: Sci Press, 1992

    MATH  Google Scholar 

  43. Zeifman A I. Some estimates of the rate of convergence for birth and death processes. J Appl Prob, 1991, 28: 268–277

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhang X. The Estimation for the First Eigenvalue of Schrödinger Operators and a Class of Geometric Inequalities. Ph D Thesis. Beijing: Beijing Normal University, 2007 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-Fa Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, MF. Speed of stability for birth-death processes. Front. Math. China 5, 379–515 (2010). https://doi.org/10.1007/s11464-010-0068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-010-0068-7

Keywords

MSC

Navigation