Skip to main content
Log in

Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schrödinger equation

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Fast evaluation of the exact transparent boundary condition for the one-dimensional cubic nonlinear Schrödinger equation is considered in this paper. In [J. Comput. Math., 2007, 25(6): 730–745], the author proposed a fast evaluation method for the half-order time derivative operator. In this paper, we apply this method for the exact transparent boundary condition for the one-dimensional cubic nonlinear Schrödinger equation. Numerical tests demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoine X, Arnold A, Besse C, Ehrhardt M, Schädle A. A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Comm Comput Sci, 2008, 4: 729–796

    Google Scholar 

  2. Antoine X, Besse C. Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J Comput Phys, 2003, 181(1): 157–175

    Article  MathSciNet  Google Scholar 

  3. Antoine X, Besse C, Descombes S. Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations, SIAM J Numer Anal, 2006, 43(6): 2272–2293

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold A. Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design, 1998, 6: 313–319

    Article  Google Scholar 

  5. Arnold A, Ehrhardt M. Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics. J Comput Phys, 1998, 145: 611–638

    Article  MATH  MathSciNet  Google Scholar 

  6. Arnold A, Ehrhardt M, Sofronov I. Approximation, stability and fast calculation of non-local boundary conditions for the Schrödinger equation. Commun Math Sci, 2003, 1(3): 501–556

    MATH  MathSciNet  Google Scholar 

  7. Baskakov V A, Popov A V. Implementation of transparent boundaries for the numerical solution of the Schrödinger equation. Wave Motion, 1991, 14: 123–128

    Article  MathSciNet  Google Scholar 

  8. Bell W W. Special Functions for Scientists and Engineers. New York: D Van Nostrand Company, Ltd, 1968

    MATH  Google Scholar 

  9. Besse C. A relaxation scheme for the nonlinear Schrödinger equation. SIAM J Numer Anal, 2004, 42(3): 934–952

    Article  MATH  MathSciNet  Google Scholar 

  10. Boutet de Monvel A, Fokas A S, Shepelsky D. Analysis of the global relation for the nonlinear Schrödinger equation on the half-line. Lett Math Phys, 2003, 65: 199–212

    Article  MATH  MathSciNet  Google Scholar 

  11. Davydov A S. Solitons in Molecular Systems. Dordrecht: Reidel, 1985

    MATH  Google Scholar 

  12. Delfour M, Fortin M, Payre G. Finite-difference solutions of a nonlinear Schrödinger equation. J Comput Phys, 1981, 44: 277–288

    Article  MATH  MathSciNet  Google Scholar 

  13. Durán A, Sanz-Serna J M. The numerical integration of relative equilibrium solution. The nonlinear Schrödinger equation. IMA J Numer Anal, 2000, 20(2): 235–261

    Article  MATH  MathSciNet  Google Scholar 

  14. Ehrhardt M, Arnold A. Discrete transparent boundary conditions for the Schrödinger equation. Riv Math Univ Parma, 2001, 6(4): 57–108

    MathSciNet  Google Scholar 

  15. Gorenflo R, Mainardi F. Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A, Mainardi F, Eds. Fractals and Fractional Calculus in Continuum Mechanics. Wien: Springer, 1997, 223–276

    Google Scholar 

  16. Han H, Huang Z Y. Exact artificial boundary conditions for Schrödinger equation in ℝ2. Comm Math Sci, 2004, 2: 79–94

    MATH  MathSciNet  Google Scholar 

  17. Han H, Yin D S, Huang Z Y. Numerical solutions of Schrödinger equations in ℝ3. Numer Meth Partial Diff Eqs, 2006, 23: 511–533

    Article  MathSciNet  Google Scholar 

  18. Hasegawa A. Optical Solitons in Fibers. Berlin: Springer-Verlag, 1989

    Google Scholar 

  19. Jiang S, Greengard L. Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension. Comput Math Appl, 2004, 47: 955–966

    Article  MATH  MathSciNet  Google Scholar 

  20. Mayfield B. Non Local Boundary Conditions for the Schrödinger Equation. Ph D Thesis. Providence: University of Rhodes Island, 1989

    Google Scholar 

  21. Papadakis J S. Exact nonreflecting boundary conditions for parabolic-type approximations in underwater acoustics. J Comput Acoust, 1994, 2(2): 83–98

    Article  Google Scholar 

  22. Schmidt F, Deuflhard P. Discrete transparent boundary conditions for the numerical solution of Fresnel’s equation. Comput Math Appl, 1995, 29(9): 53–76

    Article  MATH  MathSciNet  Google Scholar 

  23. Schmidt F, Yevick D. Discrete transparent boundary conditions for Schrödinger-type equations. J Comput Phys, 1997, 134: 96–107

    Article  MATH  MathSciNet  Google Scholar 

  24. Sulem C, Sulem P. The Nonlinear Schrödinger Equation. Berlin: Springer, 2000

    Google Scholar 

  25. Sun Z Z, Wu X. The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions. J Comput Phys, 2006, 214(1): 209–223

    Article  MATH  MathSciNet  Google Scholar 

  26. Yevick D, Friese T, Schmidt F. A comparison of transparent boundary conditions for the Fresnel equation. J Comput Phys, 2001, 168: 433–444

    Article  MATH  MathSciNet  Google Scholar 

  27. Zheng C. Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. J Comput Phys, 2006, 215: 552–565

    Article  MATH  MathSciNet  Google Scholar 

  28. Zheng C. Approximation, stability and fast evaluation of exact artificial boundary condition for the one-dimensional heat equation. J Comput Math, 2007, 25(6): 730–745

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiong Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, C. Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schrödinger equation. Front. Math. China 5, 589–606 (2010). https://doi.org/10.1007/s11464-010-0058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-010-0058-9

Keywords

MSC

Navigation