Skip to main content
Log in

Effect of farmland expansion on drought over the past century in Songnen Plain, Northeast China

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

The effects of human activities on climate change are a significant area of research in the field of global environmental change. Land use and land cover change (LUCC) has a greater effect on climate than greenhouse gases, and the effect of farmland expansion on regional drought is particularly important. From the 1910s to the 2010s, cultivated land in Songnen Plain increased by 2.67 times, the area of cultivated land increased from 4.92×104 km2 to 13.14·104 km2, and its percentage of all land increased from 25% to 70%. This provides an opportunity to study the effects of the conversion of natural grassland to farmland on climate. In this study, the drought indices in Songnen Plain were evaluated from the 1910s to the 2010s, and the effect of farmland expansion on drought was investigated using statistical methods and the Weather Research and Forecasting Model based on UK’s Climatic Research Unit data. The resulting dryness index, Palmer drought severity index, and standardized precipitation index values indicated a significant drying trend in the study area from 1981 to 2010. This trend can be attributed to increases in maximum temperature and diurnal temperature range, which increased the degree of drought. Based on statistical analysis and simulation, the maximum temperature, diurnal temperature range, and sensible heat flux increased during the growing season in Songnen Plain over the past 100 years, while the minimum temperature and latent heat flux decreased. The findings indicate that farmland expansion caused a drying trend in Songnen Plain during the study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander L V, Zhang X, Peterson T C et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111(D5): 1–22. doi: 10.1029/2005 JD006290.

    Google Scholar 

  • Betts R A, Fallon P D, Goldewijk K K et al., 2007. Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agricultural and Forest Meteorology, 142(2–4): 216–233. doi: 10.1016/j.agrformet.2006.08.021.

    Article  Google Scholar 

  • Bonan G B, 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 3205882): 1444–1449. doi: 10.1126/science.1155121.

    Article  Google Scholar 

  • Cao F Q, Dan L, Ma Z G et al., 2015. Simulative study of the cropland change on the regional climate over China. Acta Meteorologica Sinica, 731): 128–141. (in Chinese)

    Google Scholar 

  • Chen D F, Sun Z Y, 2001. American agriculture production and the protection of resource and environment. Ecological Economy, 9: 60–65. (in Chinese)

    Google Scholar 

  • Duhan D, Pandey A, Gahalaut K P S et al., 2013. Spatial and temporal variability in maximum, minimum and mean air temperatures at Madhya Pradesh in central India. Comptes Rendus Geoscience, 3451): 3–21. doi: 10.1016/j.crte.2012.10.016.

    Article  Google Scholar 

  • Dong S Y, Yan X D, Xiong Z, 2014. Modeled impacts of land-use and land-cover change in Northeast China on climate. Climatic and Environmental Research, 193): 351–361. doi: j.issn.1006-9585.2013.13022. (in Chinese)

    Google Scholar 

  • Eastman J L, Coughenour M B, Pielke R A et al., 2001. Does grazing affect regional climate? Journal of Hydrometeorology, 23): 243–235.

    Article  Google Scholar 

  • Emerson P S, William E, Magnusson BS et al., 2018. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. Journal of Thermal Biology, 73: 50–60. doi: 10.1016/j.jtherbio.2018.01.013.

    Article  Google Scholar 

  • Feddema J J, Oleson K W, Bonan G B et al., 2005. The importance of land-cover changes in simulating future climate. Science, 3105754): 1674–1678. doi: 10.1126/science.1118160.

    Article  Google Scholar 

  • Findell K L, Shevliakova E, Milly PCDet al., 2007. Modeled impact of anthropogenic land cover change on climate. Journal of Climate, 2014): 3621–3634. doi: 10.1175/JCLI4185.1. (in Chinese)

    Article  Google Scholar 

  • Foley J A, DeFries R, Asner G P et al., 2005. Global consequences of land use. Science, 3095734): 570–574. doi: 10.1126/science.1111772.

    Article  Google Scholar 

  • Füssel H M, Klein R J T, 2006. Climate change vulnerability assessments: An evolution of conceptual thinking. Climatic Change, 753): 301–329. doi: 10.1007/s10584-006-0329-3.10.

    Article  Google Scholar 

  • Gao X J, Zhang D F, Chen Z X et al., 2007. Land use effects on climate in China as simulated by a regional climate model. Science in China: Earth Sciences, 504): 620–628. doi: 10.1007/s11430-007-2060-y. (in Chinese)

    Article  Google Scholar 

  • Ge Q S, Zheng J Y, Zhang X Z et al., 2013. Simulated effects of cropland expansion on summer climate in eastern China in the last three centuries. Advances in Meteorology, 652): 93–100. doi: 10.1155/2013/501014.

    Google Scholar 

  • Hossein Tabari, Parisa Hosseinzadeh Talaee, 2011. Recent trends of mean maximum and minimum air temperatures in the western halfofIran. Meteorology andAtmospheric Physics, 111(3/4): 121–131. doi: 10.1007/s00703-011-0125-0.

    Google Scholar 

  • IPCC, 2013. Climate change 2013: The physical science basis. In: Stocker T F, Qin D H, Plattner G K et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Jiang L Q, Zhang L J, Zang S Y et al., 2015. Comparison of approaches of spatially explicit reconstruction of cropland in the late Qing Dynasty. Journal of Geographical Sciences, 704): 625–635.

    Google Scholar 

  • Kalnay E, Cai M, 2003. Impact of urbanization and land-use change on climate. Nature, 4236939): 528–531. doi: 10.1038/nature01675.

    Article  Google Scholar 

  • Lizana X C, Avila A, Tolaba A et al., 2017. Field responses of potato to increased temperature during tuber bulking: Projection for climate change scenarios, at high-yield environments of Southern Chile. Agricultural and Forest Meteorology, 239: 192–201. doi: 10.1016/j.agrformet.2017.03.012.

    Article  Google Scholar 

  • Lee X H, Goulden M L, Hollinger D Y et al., 2011. Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 4797373): 384–387. doi: 10.1038/naturel0588.

    Article  Google Scholar 

  • Li Q P, Ding Y H, Dong W J, 2007. A numerical simulation study of impacts of historical land-use change on the regional climate in China since 1700. Acta Meteorologica Sinica, 211): 9–23. (in Chinese)

    Google Scholar 

  • Li X X, Zhang X Z, Zhang L J, 2017. The varied impacts of land use/cover change on summer precipitation over eastern China. Geographical Research, 367): 1233–1244. (in Chinese)

    Google Scholar 

  • Liu J Y, Shao Q Q, Yan X D et al., 2016. The climatic impacts of land use and land cover change compared among countries. Journal of Geographical Sciences, 267): 889–903. doi: 10.1007/s1l442-016-1305-0.

    Article  Google Scholar 

  • Mahmood R, Pielke R A, Hubbard K G et al., 2014. Land cover changes and their biogeophysical effects on climate. International Journal of Climatology, 344): 929–953. doi: 10.1002/joc.3736.

    Article  Google Scholar 

  • Mahmood R, Pielke R A S, Hubbard K G et al., 2010. Impacts of land use/land cover change on climate and future research priorities. Bulletin of the American Meteorological, 911): 37–46.

    Article  Google Scholar 

  • Meng J, 2002. Agricultural development of Qing dynasty in Shanxi region and destruction of ecological environment. Journal of Historical Science, (10): 37–42. (in Chinese)

    Google Scholar 

  • Mao H Q, Xiong Z, Yan X D et al., 2016. Modeled impact of cropland expansion on regional climate in India. Chinese Journal of Ecology, 356): 1627–1634. (in Chinese)

    Google Scholar 

  • Myhre G, Myhre A, 2003. Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. Journal of Climate, 1610): 1511–1524. doi: 10.1175/1520-0442-16.10.1511.

    Article  Google Scholar 

  • Peng S S, Piao S, Zeng Z Z et al., 2014. Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences, 1118): 2915–2919. doi: 10.1073/pnas.l315126111. (in Chinese)

    Article  Google Scholar 

  • Pielke R A, Pitman A, Niyogi D et al., 2011. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdisciplinary Reviews Climate Change, 26): 828–850. doi: 10.1002/ wcc.144.

    Article  Google Scholar 

  • Sampaio G, Nobre C A, Costa M H et al., 2007. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophysical Research Letters, 34(17): L17709. doi: 10.1029/ 2007GL03012.

    Google Scholar 

  • Shilong P, Pierre F, Philippe C et al., 2007. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Environmental Sciences, 10439): 15242–15247. doi: 10.1073/pnas. 0707213104.

    Google Scholar 

  • Snyder P K, Delire C, Foley JA, 2004. Evaluating the influence of different vegetation biomes on the global climate. Climate Dynamics, 23(3/4): 279–302. doi: 10.1007/s00382-004-0430-0.

    Article  Google Scholar 

  • Song X P, Matthew C. Hansenl SV et al., 2018. Global land change from 1982 to 2016. Nature, 5607720): 639–643. doi: 10.1038/s41586-018-0411-9.

    Article  Google Scholar 

  • Sun F H, Yuan J, Guang Y, 2008. A symmetric change of maximum and minimum temperature in the Northeast China from 1959–2002. Scientia Geographica Sinica, 284): 532–536. (in Chinese)

    Google Scholar 

  • Tang G L, Ding Y H, 2007. Impacts of average air temperature derived from maximum and minimum temperatures on annual mean air temperatures series of China. Journal of Applied Meteorological Science, 182): 187–192. (in Chinese)

    Google Scholar 

  • Wen X Y, Wang S W, Zhu J H et al., 2006. An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data. Chinese Journal of Atmospheric Sciences, 305): 894–903. (in Chinese)

    Google Scholar 

  • Xu Y, Tang G L, Zhang Q, 2017. Analysis of the variation of the air temperature over China during the global warming hiatus period. Climate Change Research, 136): 569–577. (in Chinese)

    Google Scholar 

  • Yan J M, 2001. Lessons and enlightenment from land exploration and utilization in the west of the USA. Journal of Peking University (Humanities and Social Sciences), 382): 119–126. (in Chinese)

    Google Scholar 

  • Yang X C, Zhang Y L, Liu LS et al., 2009. Sensitivity of surface air temperature change to land use/cover types in China. Science in China (Series D: Earth Sciences), 398): 1207–1215. doi: 10.1007/s1l430-009-0085-0.

    Article  Google Scholar 

  • Zhang D E, 2005. Historical records of environmental changes and agricultural development in Northwest China. Advances in Climate Change Research, 12): 58–64. (in Chinese)

    Google Scholar 

  • Zhang D F, Gao X J, Shi Y et al., 2010. Agricultural land use effects on climate over China as simulated by a regional climate model. Journal of Meteorological Research, 242): 215–224.

    Google Scholar 

  • Zhang L J, Jiang L Q, Zhang X Z, 2015. Spatial explicit reconstruction of farmland for Heilongjiang province of Northeast China in 1900–1910. Journal of Geographical Sciences, 255): 627–637. doi: 10.1007/s1l442-015- 1189-4.

    Article  Google Scholar 

  • Zhang L J, Jiang L Q, Zhang X Z, 2017. Reconstruction of cropland spatial pattern and its spatiotemporal changes over the 20th century on the Songnen Plain, Northeast China. Journal of Geographical Sciences, 2710): 1209–1226. doi: 10.1007/s11442-017-1431-3.

    Article  Google Scholar 

  • Zhang L J, Wang C Z, Li X X et al., 2018. Impacts of agricultural expansion (1910s-2010s) on the water cycle in the Songneng Plain, Northeast China. Remote Sensing, 10(7): 1108. doi: 10.3390/rsl0071108.

    Article  Google Scholar 

  • Zhang L Z, Pan T, Zhang H W et al., 2017. The effects of forest area changes on extreme temperature indexes between the 1900s and 2010s in Heilongjiang Province, China. Remote Sensing, 9(12): 1280. doi: 10.3390/ rs9121280.

    Google Scholar 

  • Zhang X Z, Liu J Y, Xiong Z et al., 2015. Simulated effects of agricultural development on surface air temperature over central and eastern China in the late 20th century. Acta Geographica Sinica, 709): 1423–1433. doi: 10.11821/dlxb201509006. (in Chinese)

    Google Scholar 

  • Zhang X Z, Wang W C, Fang XQ et al., 2012. Agriculture development-induced surface albedo changes and climatic implications across northeastern China. Chinese Geographical Science, 223): 264–277. doi: 10.1007/ sll769-012-0535-z.

    Article  Google Scholar 

  • Zhao L Y, Ding R, Moore J C, 2016. The High Mountain Asia glacier contribution to sea-level rise from 2000 to 2050. Annals of Glaciology, 5771): 223–231. doi: 10.3189/2016AoG71A049.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Zhang.

Additional information

Foundation: National Natural Science Foundation of China, No.41771067; Natural Science Foundation of Heilongjiang Province, No.D2018007

Author: Yu Wanhui (1974-), PhD

Zhang Lijuan (1965-), Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Zhang, L., Zhang, H. et al. Effect of farmland expansion on drought over the past century in Songnen Plain, Northeast China. J. Geogr. Sci. 30, 439–454 (2020). https://doi.org/10.1007/s11442-020-1736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-020-1736-5

Keywords

Navigation