Skip to main content

Advertisement

Log in

Influencing factors on fines deposition in porous media by CFD–DEM simulation

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Evolution from fines migration to deposition and clogging is critical for many geotechnical and environmental engineering practices. In this study, the coupling of computational fluid dynamic and discrete element method was adopted to tackle fines migration. The surface energy density term \(\upgamma\) was used to represent the combination of Coulomb forces and van der Waals interactions. A particle-scale mechanical analysis method was adopted to identify three criteria of particle deposition conditions. (1) The drag force on the fines should be less than the electrical forces between particles, (2) the drag force and electrical force torques should be on the same order of magnitude, and (3) the contact angle between particles should be greater than 5.5°. The deposition efficiency increases from 8.5 to 37.8% as surface density energy increases from 0.001 to 0.01 J/m2 at a Reynolds number of 10. As the electrical force is more than 10 times the drag force, clogging occurred. Due to the inertial and Dean forces and the filtration effect of micropillars, a band of lacking particles appears in the symmetrical center of the pore throat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Anantanasakul P, Yamamuro JA, Lade PV (2012) Three-dimensional drained behavior of normally consolidated anisotropic kaolin clay. Soils Found 52:146–159. https://doi.org/10.1016/j.sandf.2012.01.014

    Article  Google Scholar 

  2. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fund 6:527–539. https://doi.org/10.1021/i160024a007

    Article  Google Scholar 

  3. ANSYS, Inc (2012) ANSYS FLUENT 12.0 Theory Guide

  4. Aslannezhad M, Kalantariasl A, You Z et al (2021) Micro-proppant placement in hydraulic and natural fracture stimulation in unconventional reservoirs: a review. Energy Rep 7:8997–9022. https://doi.org/10.1016/j.egyr.2021.11.220

    Article  Google Scholar 

  5. ASTM D2487-11 (2011) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA

  6. Auset M, Keller AA (2006) Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels: colloid straining and filtration. Water Resour Res. https://doi.org/10.1029/2005WR004639

    Article  Google Scholar 

  7. Barrios GKP, de Carvalho RM, Kwade A, Tavares LM (2013) Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technol 248:84–93. https://doi.org/10.1016/j.powtec.2013.01.063

    Article  Google Scholar 

  8. Bate B, Chen X, Chen J et al (2022) Internal erosion monitoring with a rowe cell type compression–breakthrough–bender element column. Acta Geotech 17:2365–2377. https://doi.org/10.1007/s11440-021-01413-4

    Article  Google Scholar 

  9. Bate B, Chen C, Liu P et al (2022) The migration and deposition behaviors of montmorillonite and kaolinite particles in a two-dimensional micromodel. Materials 15:855. https://doi.org/10.3390/ma15030855

    Article  Google Scholar 

  10. Cai Y, Li C, Zhao Y (2021) A review of the migration and transformation of microplastics in inland water systems. IJERPH 19:148. https://doi.org/10.3390/ijerph19010148

    Article  Google Scholar 

  11. Cao SC, Jang J, Jung J et al (2019) 2D micromodel study of clogging behavior of fine-grained particles associated with gas hydrate production in NGHP-02 gas hydrate reservoir sediments. Mar Pet Geol 108:714–730. https://doi.org/10.1016/j.marpetgeo.2018.09.010

    Article  Google Scholar 

  12. Cao SC, Jung J, Radonjic M (2019) Application of microfluidic pore models for flow, transport, and reaction in geological porous media: from a single test bed to multifunction real-time analysis tool. Microsyst Technol 25:4035–4052. https://doi.org/10.1007/s00542-019-04612-y

    Article  Google Scholar 

  13. Carman PC (1997) Fluid flow through granular beds. Chem Eng Res Des 75:S32–S48. https://doi.org/10.1016/S0263-8762(97)80003-2

    Article  Google Scholar 

  14. Chang DS, Zhang LM (2013) Critical hydraulic gradients of internal erosion under complex stress states. J Geotech Geoenviron Eng 139:1454–1467. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000871

    Article  Google Scholar 

  15. Chang D, Zhang L, Cheuk J (2014) Mechanical consequences of internal soil erosion. HKIE Trans 21:198–208. https://doi.org/10.1080/1023697X.2014.970746

    Article  Google Scholar 

  16. Chapuis RP, Aubertin M (2011) On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Can Geotech J 40:616–628

    Article  Google Scholar 

  17. Chen F, Xiong H, Wang X, Yin Z-Y (2022) Transmission effect of eroded particles in suffusion using the CFD–DEM coupling method. Acta Geotech. https://doi.org/10.1007/s11440-022-01568-8

    Article  Google Scholar 

  18. Chen C, Zhang L (2021) Hydro-mechanical behaviour of soil experiencing seepage erosion under cyclic hydraulic gradient. Géotechnique. https://doi.org/10.1680/jgeot.20.P.340

    Article  Google Scholar 

  19. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  20. DEM Solutions Ltd (2017) EDEM 2018 theory guide

  21. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038. https://doi.org/10.1039/b912547g

    Article  Google Scholar 

  22. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104:18892–18897. https://doi.org/10.1073/pnas.0704958104

    Article  Google Scholar 

  23. Dong M, Li J, Shang Y, Li S (2019) Numerical investigation on deposition process of submicron particles in collision with a single cylindrical fiber. J Aerosol Sci 129:1–15. https://doi.org/10.1016/j.jaerosci.2018.12.001

    Article  Google Scholar 

  24. Dong C, Wang L, Zhou Y et al (2020) Microcosmic retaining mechanism and behavior of screen media with highly argillaceous fine sand from natural gas hydrate reservoir. J Nat Gas Sci Eng 83:103618. https://doi.org/10.1016/j.jngse.2020.103618

    Article  Google Scholar 

  25. Drioli E, Giorno L (2016) Encyclopedia of Membranes. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  26. Dunnett SJ, Clement CF (2012) Numerical investigation into the loading behaviour of filters operating in the diffusional and interception deposition regimes. J Aerosol Sci 53:85–99. https://doi.org/10.1016/j.jaerosci.2012.06.008

    Article  Google Scholar 

  27. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    Google Scholar 

  28. Espinosa-Gayosso A, Ghisalberti M, Ivey GN, Jones NL (2012) Particle capture and low-Reynolds-number flow around a circular cylinder. J Fluid Mech 710:362–378. https://doi.org/10.1017/jfm.2012.367

    Article  MATH  Google Scholar 

  29. Feng Q, Cha L, Dai C et al (2020) Effect of particle size and concentration on the migration behavior in porous media by coupling computational fluid dynamics and discrete element method. Powder Technol 360:704–714. https://doi.org/10.1016/j.powtec.2019.10.011

    Article  Google Scholar 

  30. Flagan RC, Seinfeld JH (1988) Fundamentals of air pollution engineering. Prentice Hall, Englewood Cliffs

    Google Scholar 

  31. Fleshman MS, Rice JD (2014) Laboratory modeling of the mechanisms of piping erosion initiation. J Geotech Geoenviron Eng 140:04014017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001106

    Article  Google Scholar 

  32. Frey JM, Schmitz P, Dufreche J, Pinheiro IG (1999) Particle deposition in porous media: analysis of hydrodynamic and weak inertial effects. Transp Porous Media 37:25–54

    Article  Google Scholar 

  33. Glover PW, Zadjali II, Frew KA (2006) Permeability prediction from MICP and NMR data using an electrokinetic approach. Geophysics 71:F49–F60. https://doi.org/10.1190/1.2216930

    Article  Google Scholar 

  34. Goldsztein GH, Santamarina JC (2004) Suspension extraction through an opening before clogging. Appl Phys Lett 85:4535. https://doi.org/10.1063/1.1818342

    Article  Google Scholar 

  35. Gu DM, Huang D, Liu HL et al (2019) A DEM-based approach for modeling the evolution process of seepage-induced erosion in clayey sand. Acta Geotech 14:1629–1641. https://doi.org/10.1007/s11440-019-00848-0

    Article  Google Scholar 

  36. Guo J-J, Huang X-P, Xiang L et al (2020) Source, migration and toxicology of microplastics in soil. Environ Int 137:105263. https://doi.org/10.1016/j.envint.2019.105263

    Article  Google Scholar 

  37. Hajra MG, Reddi LN, Glasgow LA et al (2002) Effects of ionic strength on fine particle clogging of soil filters. J Geotech Geoenviron Eng 128:631–639. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:8(631)

    Article  Google Scholar 

  38. Han G, Kwon T-H, Lee JY, Jung J (2020) Fines migration and pore clogging induced by single- and two-phase fluid flows in porous media: From the perspectives of particle detachment and particle-level forces. Geomech Energy Environ 23:100131. https://doi.org/10.1016/j.gete.2019.100131

    Article  Google Scholar 

  39. Hertz H (1882) On the contact of elastic solids. J Reine Angew Math 92:156–171

    Article  MathSciNet  MATH  Google Scholar 

  40. Hu Z, Zhang Y, Yang Z (2019) Suffusion-induced deformation and microstructural change of granular soils: a coupled CFD–DEM study. Acta Geotech 14:795–814. https://doi.org/10.1007/s11440-019-00789-8

    Article  Google Scholar 

  41. Hu Z, Zhang Y, Yang Z (2020) Suffusion-induced evolution of mechanical and microstructural properties of gap-graded soils using CFD–DEM. J Geotech Geoenviron Eng 146:04020024. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002245

    Article  Google Scholar 

  42. Hunter RJ (2001) Foundations of colloid science, 2nd edn. Oxford University Press, Oxford, New York

    Google Scholar 

  43. Indraratna B, Medawela SK, Athuraliya S et al (2019) Chemical clogging of granular media under acidic groundwater conditions. Environ Geotech. https://doi.org/10.1680/jenge.18.00143

    Article  Google Scholar 

  44. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  45. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301–313. https://doi.org/10.1098/rspa.1971.0141

    Article  Google Scholar 

  46. Jung J, Cao SC, Shin Y-H et al (2018) A microfluidic pore model to study the migration of fine particles in single-phase and multi-phase flows in porous media. Microsyst Technol 24:1071–1080. https://doi.org/10.1007/s00542-017-3462-1

    Article  Google Scholar 

  47. Jung JW, Jang J, Santamarina JC et al (2012) Gas production from hydrate-bearing sediments: the role of fine particles. Energy Fuels 26:480–487. https://doi.org/10.1021/ef101651b

    Article  Google Scholar 

  48. Jung J, Kang H, Cao SC et al (2019) Effects of fine-grained particles’ migration and clogging in porous media on gas production from hydrate-bearing sediments. Geofluids 2019:1–11. https://doi.org/10.1155/2019/5061216

    Article  Google Scholar 

  49. Kalantariasl A, Bedrikovetsky P (2014) Stabilization of external filter cake by colloidal forces in a “well–reservoir” system. Ind Eng Chem Res 53:930–944. https://doi.org/10.1021/ie402812y

    Article  Google Scholar 

  50. Kanitz M, Grabe J (2021) The influence of the void fraction on the particle migration: a coupled computational fluid dynamics–discrete element method study about drag force correlations. Int J Numer Anal Methods Geomech 45:45–63. https://doi.org/10.1002/nag.3131

    Article  Google Scholar 

  51. Kasper G, Schollmeier S, Meyer J (2010) Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. J Aerosol Sci 41:1167–1182. https://doi.org/10.1016/j.jaerosci.2010.08.006

    Article  Google Scholar 

  52. Khilar KC, Fogler HS (1998) Migrations of fines in porous media. Springer, Dordrecht

    Book  Google Scholar 

  53. Kim J-S, Lee I-M, Jang J-H, Choi H (2009) Groutability of cement-based grout with consideration of viscosity and filtration phenomenon. Int J Numer Anal Meth Geomech 33:1771–1797. https://doi.org/10.1002/nag.785

    Article  MATH  Google Scholar 

  54. Kimura M (2018) Prediction of tortuosity, permeability, and pore radius of water-saturated unconsolidated glass beads and sands. J Acoust Soc Am 143:3154–3168. https://doi.org/10.1121/1.5039520

    Article  Google Scholar 

  55. Kuwano R, Santa Spitia LF, Bedja M, Otsubo M (2021) Change in mechanical behaviour of gap-graded soil subjected to internal erosion observed in triaxial compression and torsional shear. Geomech Energy Environ 27:100197. https://doi.org/10.1016/j.gete.2020.100197

    Article  Google Scholar 

  56. Li S-Q, Marshall JS (2007) Discrete element simulation of micro-particle deposition on a cylindrical fiber in an array. J Aerosol Sci 38:1031–1046. https://doi.org/10.1016/j.jaerosci.2007.08.004

    Article  Google Scholar 

  57. Li Y, Wu N, Ning F et al (2020) Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation. Energy 206:118030. https://doi.org/10.1016/j.energy.2020.118030

    Article  Google Scholar 

  58. Li H, Zhao Y, Han Z, Hong M (2015) Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration. Water Sci Technol 72:1463–1471. https://doi.org/10.2166/wst.2015.308

    Article  Google Scholar 

  59. Lin Y-J, He P, Tavakkoli M et al (2017) Characterizing asphaltene deposition in the presence of chemical dispersants in porous media micromodels. Energy Fuels 31:11660–11668. https://doi.org/10.1021/acs.energyfuels.7b01827

    Article  Google Scholar 

  60. Liu C, Hu G, Jiang X, Sun J (2015) Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab Chip 15:1168–1177. https://doi.org/10.1039/C4LC01216J

    Article  Google Scholar 

  61. Liu Y, Wang L, Hong Y et al (2020) A coupled CFD–DEM investigation of suffusion of gap graded soil: coupling effect of confining pressure and fines content. Int J Numer Anal Methods Geomech 44:2473–2500. https://doi.org/10.1002/nag.3151

    Article  Google Scholar 

  62. Liu Y, Zhang Y, Lan S, Hou S (2019) Migration experiment and numerical simulation of modified nanoscale zero-valent iron (nZVI) in porous media. J Hydrol 579:124193. https://doi.org/10.1016/j.jhydrol.2019.124193

    Article  Google Scholar 

  63. Liu Q, Zhao B, Santamarina JC (2019) Particle migration and clogging in porous media: a convergent flow microfluidics study. J Geophys Res Solid Earth 124:9495–9504. https://doi.org/10.1029/2019JB017813

    Article  Google Scholar 

  64. Lommen S, Schott D, Lodewijks G (2014) DEM speedup: Stiffness effects on behavior of bulk material. Particuology 12:107–112. https://doi.org/10.1016/j.partic.2013.03.006

    Article  Google Scholar 

  65. Lu H, Dong J, Xi B et al (2021) Transport and retention of porous silicon-coated zero-valent iron in saturated porous media. Environ Pollut 276:116700. https://doi.org/10.1016/j.envpol.2021.116700

    Article  Google Scholar 

  66. McCabe W, Smith J, Harriott P (1993) Unit operations of chemical engineering, 5th edn. McGraw-Hill Publishing, New York

    Google Scholar 

  67. Miguel AF (2004) Porous media and filtration. In: Ingham DB, Bejan A, Mamut E, Pop I (eds) Emerging technologies and techniques in porous media. Springer, Dordrecht, pp 419–431

    Chapter  Google Scholar 

  68. Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech 16:259–268. https://doi.org/10.1115/1.4009973

    Article  MathSciNet  MATH  Google Scholar 

  69. Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. J Appl Mech 20:327–344. https://doi.org/10.1115/1.4010702

    Article  MathSciNet  MATH  Google Scholar 

  70. Moffat R, Fannin RJ, Garner SJ (2011) Spatial and temporal progression of internal erosion in cohesionless soil. Can Geotech J 48:399–412. https://doi.org/10.1139/T10-071

    Article  Google Scholar 

  71. El Mohtar CS, Yoon J, El-Khattab M (2015) Experimental study on penetration of bentonite grout through granular soils. Can Geotech J 52:1850–1860. https://doi.org/10.1139/cgj-2014-0422

    Article  Google Scholar 

  72. Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55:193. https://doi.org/10.1017/S0022112072001806

    Article  MATH  Google Scholar 

  73. Otaru AJ, Morvan HP, Kennedy AR (2018) Measurement and simulation of pressure drop across replicated porous aluminium in the Darcy-Forchheimer regime. Acta Mater 149:265–273. https://doi.org/10.1016/j.actamat.2018.02.051

    Article  Google Scholar 

  74. Othman F, Yu M, Kamali F, Hussain F (2018) Fines migration during supercritical CO2 injection in sandstone. J Nat Gas Sci Eng 56:344–357. https://doi.org/10.1016/j.jngse.2018.06.001

    Article  Google Scholar 

  75. Oyeneyin MB, Peden JM, Hosseini A, Ren G (1995) Factors to Consider in the Effective Management and Control of Fines Migration in High Permeability Sands. OnePetro

  76. Pandya VB, Bhuniya S, Khilar KC (1998) Existence of a critical particle concentration in plugging of a packed bed. AIChE J 44:978–981. https://doi.org/10.1002/aic.690440424

    Article  Google Scholar 

  77. Pradhan S, Shaik I, Lagraauw R, Bikkina P (2019) A semi-experimental procedure for the estimation of permeability of microfluidic pore network. MethodsX 6:704–713. https://doi.org/10.1016/j.mex.2019.03.025

    Article  Google Scholar 

  78. Prodi F, Tampieri F (1982) The removal of particulate matter from the atmosphere: the physical mechanisms. Pure Appl Geophys 120:286–325. https://doi.org/10.1007/BF00877038

    Article  Google Scholar 

  79. Raychoudhury T, Tufenkji N, Ghoshal S (2012) Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res 46:1735–1744. https://doi.org/10.1016/j.watres.2011.12.045

    Article  Google Scholar 

  80. Rodríguez de Castro A, Radilla G (2017) Non-Darcian flow of shear-thinning fluids through packed beads: experiments and predictions using Forchheimer’s law and Ergun’s equation. Adv Water Resour 100:35–47. https://doi.org/10.1016/j.advwatres.2016.12.009

    Article  Google Scholar 

  81. Roessler T, Katterfeld A (2019) DEM parameter calibration of cohesive bulk materials using a simple angle of repose test. Particuology 45:105–115. https://doi.org/10.1016/j.partic.2018.08.005

    Article  Google Scholar 

  82. Russell T, Wong K, Zeinijahromi A, Bedrikovetsky P (2018) Effects of delayed particle detachment on injectivity decline due to fines migration. J Hydrol 564:1099–1109. https://doi.org/10.1016/j.jhydrol.2018.07.067

    Article  Google Scholar 

  83. Santamarina JC (2003) Soil behavior at the microscale: particle forces. In: Soil behavior and soft ground construction. American Society of Civil Engineers, Cambridge, Massachusetts, pp 25–56

  84. Sato M, Kuwano R (2018) Laboratory testing for evaluation of the influence of a small degree of internal erosion on deformation and stiffness. Soils Found 58:547–562. https://doi.org/10.1016/j.sandf.2018.01.004

    Article  Google Scholar 

  85. Sbai MA, Azaroual M (2011) Numerical modeling of formation damage by two-phase particulate transport processes during CO2 injection in deep heterogeneous porous media. Adv Water Resour 34:62–82. https://doi.org/10.1016/j.advwatres.2010.09.009

    Article  Google Scholar 

  86. Selomulya C, Tran TM, Jia X, Williams RA (2006) An integrated methodology to evaluate permeability from measured microstructures. AIChE J 52:3394–3400. https://doi.org/10.1002/aic.10967

    Article  Google Scholar 

  87. Sokama-Neuyam YA, Ginting PUR, Timilsina B, Ursin JR (2017) The impact of fines mobilization on CO2 injectivity: an experimental study. Int J Greenh Gas Control 65:195–202. https://doi.org/10.1016/j.ijggc.2017.08.019

    Article  Google Scholar 

  88. Spielman LA (1977) Particle capture from low-speed laminar flows. Annu Rev Fluid Mech 9:297–319. https://doi.org/10.1146/annurev.fl.09.010177.001501

    Article  MATH  Google Scholar 

  89. Sterpi D (2003) Effects of the erosion and transport of fine particles due to seepage flow. Int J Geomech 3:111–122. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(111)

    Article  Google Scholar 

  90. Strutz TJ, Hornbruch G, Dahmke A, Köber R (2016) Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media. J Contam Hydrol 191:54–65. https://doi.org/10.1016/j.jconhyd.2016.04.008

    Article  Google Scholar 

  91. Tang Y, Yao X, Chen Y et al (2020) Experiment research on physical clogging mechanism in the porous media and its impact on permeability. Granul Matter 22:37. https://doi.org/10.1007/s10035-020-1001-8

    Article  Google Scholar 

  92. Tangjarusritaratorn T, Miyazaki Y, Kikumoto M, Kishida K (2022) Modeling suffusion of ideally gap-graded soil. Num Anal Meth Geomech 46:1331–1355. https://doi.org/10.1002/nag.3348

    Article  Google Scholar 

  93. Tao R, Yang M, Li S (2018) Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation. J Zhejiang Univ Sci A 19:34–44. https://doi.org/10.1631/jzus.A1700156

    Article  Google Scholar 

  94. Tao R, Yang M, Li S (2020) Effect of adhesion on clogging of microparticles in fiber filtration by DEM-CFD simulation. Powder Technol 360:289–300. https://doi.org/10.1016/j.powtec.2019.09.083

    Article  Google Scholar 

  95. Train D (1958) Some aspects of the property of angle of repose of powders. J Pharm Pharmacol 10:127T-135T. https://doi.org/10.1111/j.2042-7158.1958.tb10391.x

    Article  Google Scholar 

  96. Ucgul M, Fielke JM, Saunders C (2014) Three-dimensional discrete element modelling of tillage: determination of a suitable contact model and parameters for a cohesionless soil. Biosys Eng 121:105–117. https://doi.org/10.1016/j.biosystemseng.2014.02.005

    Article  Google Scholar 

  97. Valdes JR, Carlos Santamarina J (2007) Particle transport in a nonuniform flow field: retardation and clogging. Appl Phys Lett 90:244101. https://doi.org/10.1063/1.2748850

    Article  Google Scholar 

  98. van Beek VM, Knoeff H, Sellmeijer H (2011) Observations on the process of backward erosion piping in small-, medium- and full-scale experiments. Eur J Environ Civ Eng 15:1115–1137. https://doi.org/10.1080/19648189.2011.9714844

    Article  Google Scholar 

  99. Waite WF, Santamarina JC, Cortes DD et al (2009) Physical properties of hydrate-bearing sediments. Rev Geophys 47:RG4003. https://doi.org/10.1029/2008RG000279

    Article  Google Scholar 

  100. Wang T, Wang P, Yin Z, Zhang F (2022) DEM-DFM modeling of suffusion in calcareous sands considering the effect of double-porosity. Comput Geotech 151:104965. https://doi.org/10.1016/j.compgeo.2022.104965

    Article  Google Scholar 

  101. Wang P, Yin Z-Y (2022) Effect of particle breakage on the behavior of soil-structure interface under constant normal stiffness condition with DEM. Comput Geotech 147:104766. https://doi.org/10.1016/j.compgeo.2022.104766

    Article  Google Scholar 

  102. Wang P, Yin Z-Y, Wang Z-Y (2022) Micromechanical investigation of particle-size effect of granular materials in biaxial test with the role of particle breakage. J Eng Mech 148:04021133. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002039

    Article  Google Scholar 

  103. Wantanaphong J, Mooney SJ, Bailey EH (2006) Quantification of pore clogging characteristics in potential permeable reactive barrier (PRB) substrates using image analysis. J Contam Hydrol 86:299–320. https://doi.org/10.1016/j.jconhyd.2006.04.003

    Article  Google Scholar 

  104. Wei Y, Li C, Cao D et al (2019) The effects of particle size and inorganic mineral content on fines migration in fracturing proppant during coalbed methane production. J Pet Sci Eng 182:106355. https://doi.org/10.1016/j.petrol.2019.106355

    Article  Google Scholar 

  105. Wu N, Li Y, Chen Q et al (2021) Sand production management during marine natural gas hydrate exploitation: review and an innovative solution. Energy Fuels 35:4617–4632. https://doi.org/10.1021/acs.energyfuels.0c03822

    Article  Google Scholar 

  106. Xiao M, Shwiyhat N (2012) Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils. Geotech Test J 35:104594. https://doi.org/10.1520/GTJ104594

    Article  Google Scholar 

  107. Xiong H, Zhang Z, Sun X et al (2022) Clogging effect of fines in seepage erosion by using CFD–DEM. Comput Geotech 152:105013. https://doi.org/10.1016/j.compgeo.2022.105013

    Article  Google Scholar 

  108. Xu BH, Yu AB (1997) Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52:2785–2809. https://doi.org/10.1016/S0009-2509(97)00081-X

    Article  Google Scholar 

  109. Xu S, Zhu Y, Cao H et al (2022) Studying the soil column formation in soft soil improved by vacuum preloading via coupled scale-up CFD–DEM simulations. Num Anal Meth Geomech 46:1272–1291. https://doi.org/10.1002/nag.3345

    Article  Google Scholar 

  110. Yao K-M, Habibian MT, O’Melia CR (1971) Water and waste water filtration. Concepts Appl Environ Sci Technol 5:1105–1112. https://doi.org/10.1021/es60058a005

    Article  Google Scholar 

  111. Zhang R, Bo K, Liu Z (2021) A method of sizing plugging nanoparticles to prevent water invasion for shale wellbore stability based on CFD–DEM simulation. J Pet Sci Eng 196:107733. https://doi.org/10.1016/j.petrol.2020.107733

    Article  Google Scholar 

  112. Zhang F, Li M, Peng M et al (2019) Three-dimensional DEM modeling of the stress–strain behavior for the gap-graded soils subjected to internal erosion. Acta Geotech 14:487–503. https://doi.org/10.1007/s11440-018-0655-4

    Article  Google Scholar 

  113. Zhang X, Liu J (2022) Simplified model for the calculation of the particle capture process in air filter media. Chem Eng Sci 249:117358. https://doi.org/10.1016/j.ces.2021.117358

    Article  Google Scholar 

  114. Zhang F, Wang C, Wang T (2022) Model test on backward erosion piping under a K0 stress state. Int J Geomech 22:04022015. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002326

    Article  Google Scholar 

  115. Zhao T, Houlsby GT, Utili S (2014) Investigation of granular batch sedimentation via DEM–CFD coupling. Granul Matter 16:921–932. https://doi.org/10.1007/s10035-014-0534-0

    Article  Google Scholar 

  116. Zhao B, Liu Q, Santamarina JC (2018) Particle migration and clogging in radial flow: a microfluidics study. In: Giovine P, Mariano PM, Mortara G (eds) Micro to MACRO mathematical modelling in soil mechanics. Springer International Publishing, Cham, pp 413–418

    Chapter  Google Scholar 

  117. Zheng Y, Wang H, Yang B et al (2020) CFD–DEM simulation of proppant transport by supercritical CO2 in a vertical planar fracture. J Nat Gas Sci Eng 84:103647. https://doi.org/10.1016/j.jngse.2020.103647

    Article  Google Scholar 

  118. Zhou Z, Cai X, Du X et al (2019) Strength and filtration stability of cement grouts in porous media. Tunn Undergr Space Technol 89:1–9. https://doi.org/10.1016/j.tust.2019.03.015

    Article  Google Scholar 

  119. Zhou ZY, Kuang SB, Chu KW, Yu AB (2010) Discrete particle simulation of particle–fluid flow: model formulations and their applicability. J Fluid Mech 661:482–510. https://doi.org/10.1017/S002211201000306X

    Article  MathSciNet  MATH  Google Scholar 

  120. Zhou J, Zhang L, Hu C et al (2022) Calibration of wet sand and gravel particles based on JKR contact model. Powder Technol 397:117005. https://doi.org/10.1016/j.powtec.2021.11.049

    Article  Google Scholar 

  121. Zornberg JG, Bouazza A, McCartney JS (2010) Geosynthetic capillary barriers: current state of knowledge. Geosynth Int 17:273–300

    Article  Google Scholar 

  122. Zou Y, Chen C, Zhang L (2020) Simulating progression of internal erosion in gap-graded sandy gravels using coupled CFD–DEM. Int J Geomech 20:04019135. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001520

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China (Award No.: 51988101), the Ministry of Science and Technology of China (Award No.: 2019YFC1805002, 2018YFC1802300), and the National Natural Science Foundation of China (Award No.: 42177118, 51779219). Financial support from the Overseas Expertise Introduction Center for Discipline Innovation (B18047) is also acknowledged. The authors would also like to acknowledge the Centrifugal Hypergravity and Interdisciplinary Experimental Center (CHIEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bate Bate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Sun, M., Chen, Z. et al. Influencing factors on fines deposition in porous media by CFD–DEM simulation. Acta Geotech. 18, 4539–4563 (2023). https://doi.org/10.1007/s11440-023-01870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01870-z

Keywords

Navigation