Skip to main content
Log in

Engineering properties of marine soft clay stabilized by alkali residue and steel slag: an experimental study and ANN model

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Solid wastes are increasingly used to stabilize marine soft clay. Disposals of alkali slag and steel slag cause serious problems in Lianyungang City. These two waste materials are used to produce the compound cementitious material by mixing with GGBS, replacing the cement to treat the soft clay in Xuwei Port. The raw materials are collected from fields. The orthogonal test is performed to investigate the unconfined compressive strength (UCS) of the treated soil. The influence of alkali slag-soft soil (SR-S) ratio, the steel slag-GGBS (SS-GGBS) ratio, the curing agent, and the curing time are considered, followed by the investigation of reaction mechanisms. The optimal mixing ratio is recommended when the SR-S ratio is 1:1 and the curing agent content equals 10%. A well-documented dataset is developed by summarizing 1069 data of UCS from the literature. A PSO-BP-NN model is developed using the collected data and the experimental data so that generalization is guaranteed. The model is feasible to predict the UCS of treated soil by considering characters of the material properties and experimental techniques. This study aims to provide a reference for initially determining the mixing ratio of cementitious materials at field treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21.
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Abdullah HH, Shahin MA, Sarker P (2017) Stabilisation of clay with fly-ash geopolymer incorporating GGBFS. In: Proceedings of the second proceedings of the second world congress on civil, structural and environmental engineering (CSEE’17), vol 141, pp 1–8

  2. Abdullah HH, Shahin MA, Walske ML (2019) Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag. Soils Found 59(6):1906–1920. https://doi.org/10.1016/j.sandf.2019.08.005

    Article  Google Scholar 

  3. Al-Bared MAM, Mustaffa Z, Armaghani DJ, Marto A, Yunus NZM, Hasanipanah M (2021) Application of hybrid intelligent systems in predicting the unconfined compressive strength of clay material mixed with recycled additive. Transp Geotech 30:100627

    Article  Google Scholar 

  4. Al-Khafaji Z, Al-Naely H, Al-Najar A (2018) A review applying industrial waste materials in stabilisation of soft soil. Electr J Struct Eng 18(2):16–23

    Article  Google Scholar 

  5. Annually RI (1995) ASTM Standards

  6. Armaghani DJ, Hajihassani M, Mohamad ET, Marto A, Noorani S (2014) Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arab J Geosci 7(12):5383–5396

    Article  Google Scholar 

  7. Armaghani DJ, Mirzaei F, Shariati M, Trung NT, Shariati M, Trnavac D (2020) Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber. Geomech Eng 20(3):191–205

    Google Scholar 

  8. Armaghani DJ, Mohamad ET, Narayanasamy MS, Narita N, Yagiz S (2017) Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn Undergr Space Technol 63:29–43

    Article  Google Scholar 

  9. ASTM C (1999) 305, Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM International

  10. ASTM DA (2016) Standard test method for unconfined compressive strength of cohesive soil. ASTM international West Conshohocken, PA

  11. Bahadori H, Hasheminezhad A, Alizadeh S (2020) The influence of natural pozzolans structure on marl soil stabilization. Transp Infrastruct Geotechnol 7(1):46–54

    Article  Google Scholar 

  12. Baroghel-Bouny V, Wang X, Thiery M, Saillio M, Barberon F (2012) Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis. Cement Concr Res 42(9):1207–1224. https://doi.org/10.1016/j.cemconres.2012.05.008

    Article  Google Scholar 

  13. Belhadj E, Diliberto C, Lecomte A (2012) Characterization and activation of basic oxygen furnace slag. Cement Concr Compos 34(1):34–40. https://doi.org/10.1016/j.cemconcomp.2011.08.012

    Article  Google Scholar 

  14. Bengio Y, Grandvalet Y (2004) No unbiased estimator of the variance of k-fold cross-validation. J Mach Learn Res 5:1089–1105

    MathSciNet  MATH  Google Scholar 

  15. Breiman L (2001) Random forests. MLear 45(1):5–32

    MATH  Google Scholar 

  16. Briançon L, Simon B (2017) Pile-supported embankment over soft soil for a high-speed line. Geosynth Int. https://doi.org/10.1680/jgein.17.00002

    Article  Google Scholar 

  17. Cai Y, Hao B, Gu C, Wang J, Pan L (2018) Effect of anisotropic consolidation stress paths on the undrained shear behavior of reconstituted Wenzhou clay. Eng Geol 242:23–33

    Article  Google Scholar 

  18. Canakci H, Güllü H, Alhashemy A (2019) Performances of using geopolymers made with various stabilizers for deep mixing. Materials 12(16):2542

    Article  Google Scholar 

  19. Celik E, Nalbantoglu Z (2013) Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Eng Geol 163:20–25

    Article  Google Scholar 

  20. Chen Y, Chen M, Zhang W, Zhang Y (2017) Engineering properties of solidified soda residue with ggbs and cement. J Build Mater 20(04):582–585

    Google Scholar 

  21. Cikmit AA, Tsuchida T, Hashimoto R, Honda H, Kang G, Sogawa K (2019) Expansion characteristic of steel slag mixed with soft clay. Construct Build Mater 227:116799

    Article  Google Scholar 

  22. Consoli NC, Morales DP, Saldanha RB (2021) A new approach for stabilization of lateritic soil with Portland cement and sand: Strength and durability. Acta Geotech 16(5):1473–1486

    Article  Google Scholar 

  23. Cristelo N, Glendinning S, Fernandes L, Pinto AT (2013) Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. Acta Geotech 8(4):395–405

    Article  Google Scholar 

  24. Czarnecki S, Shariq M, Nikoo M, Sadowski Ł (2021) An intelligent model for the prediction of the compressive strength of cementitious composites with ground granulated blast furnace slag based on ultrasonic pulse velocity measurements. Measurement 172:108951

    Article  Google Scholar 

  25. Dehghanbanadaki A, Khari M, Arefnia A, Ahmad K, Motamedi S (2019) A study on UCS of stabilized peat with natural filler: a computational estimation approach. KSCE J Civ Eng 23(4):1560–1572

    Article  Google Scholar 

  26. Deng Y, Yue X, Liu S, Chen Y, Zhang D (2015) Hydraulic conductivity of cement-stabilized marine clay with metakaolin and its correlation with pore size distribution. Eng Geol 193:146–152

    Article  Google Scholar 

  27. Diao J, Zhou W, Ke Z, Qiao Y, Zhang T, Liu X, Xie B (2016) System assessment of recycling of steel slag in converter steelmaking. J Clean Prod 125:159–167. https://doi.org/10.1016/j.jclepro.2016.03.040

    Article  Google Scholar 

  28. Duan W, Cai G, Liu S, Puppala AJ, Chen R (2019) In-situ evaluation of undrained shear strength from seismic piezocone penetration tests for soft marine clay in Jiangsu, China. Transp Geotech 20:100253

    Article  Google Scholar 

  29. Eberhart R, Kennedy J (Year) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks

  30. Fasihnikoutalab MH, Pourakbar S, Ball RJ, Unluer C, Cristelo N (2020) Sustainable soil stabilisation with ground granulated blast-furnace slag activated by olivine and sodium hydroxide. Acta Geotech 15(7):1981–1991

    Article  Google Scholar 

  31. Fisher LV, Barron AR (2019) The recycling and reuse of steelmaking slags—A review. Resour Conserv Recycl 146:244–255

    Article  Google Scholar 

  32. Gowthaman S, Nakashima K, Kawasaki S (2018) A state-of-the-art review on soil reinforcement technology using natural plant fiber materials: past findings, present trends and future directions. Materials 11(4):553. https://doi.org/10.3390/ma11040553

    Article  Google Scholar 

  33. Guo J, Bao Y, Wang M (2018) Steel slag in China: treatment, recycling, and management. Waste Manag 78:318–330

    Article  Google Scholar 

  34. Hajihassani M, Armaghani DJ, Kalatehjari R (2018) Applications of particle swarm optimization in geotechnical engineering: a comprehensive review. Geotech Geol Eng 36(2):705–722

    Article  Google Scholar 

  35. He J, Shi X, Li Z (2019) Strength properties of dredged silt at high water content treated with sodium silicate soda residue and ground granulated blastfurnace slag. J Eng Geol 27(04):729–736

    Google Scholar 

  36. He J, Shi X-K, Li Z-X, Zhang L, Feng X-Y, Zhou L-R (2020) Strength properties of dredged soil at high water content treated with soda residue, carbide slag, and ground granulated blast furnace slag. Constr Build Mater 242:118126

    Article  Google Scholar 

  37. Jalal FE, Mulk S, Memon SA, Jamhiri B, Naseem A (2021) Strength, hydraulic, and microstructural characteristics of expansive soils incorporating marble dust and rice husk ash. Adv Civil Eng 2021:1–18. https://doi.org/10.1155/2021/9918757

    Google Scholar 

  38. Jamali B, Rasekh M, Jamadi F, Gandomkar R, Makiabadi F (2019) Using PSO-GA algorithm for training artificial neural network to forecast solar space heating system parameters. Appl Therm Eng 147:647–660

    Article  Google Scholar 

  39. Jia-Ying S, Xie J (2015) A novel soft soil curing agent using waste residue. Adv Cem Res 27(1):22–27

    Article  Google Scholar 

  40. Kalkan E, Akbulut S, Tortum A, Celik S (2009) Prediction of the unconfined compressive strength of compacted granular soils by using inference systems. Environ Geol 58(7):1429–1440

    Article  Google Scholar 

  41. Kang G, Cikmit AA, Tsuchida T, Honda H, Kim Y-S (2019) Strength development and microstructural characteristics of soft dredged clay stabilized with basic oxygen furnace steel slag. Constr Build Mater 203:501–513

    Article  Google Scholar 

  42. Kardani N, Zhou A, Shen S-L, Nazem M (2021) Estimating unconfined compressive strength of unsaturated cemented soils using alternative evolutionary approaches. Transport Geotech 29:100591

    Article  Google Scholar 

  43. Kumar UA, Biradar KB (2014) Soft subgrade stabilization with Quarry dust-an industrial waste. IJRET Int J Res Eng Technol 3(08):409–412

    Article  Google Scholar 

  44. Kusuma RI, Mina E, Fathonah W, Tora MPL (2021) Soil improvement using steel slag waste on the value of the unconfined compressive strength of the soil (Case Study on Bojonegara Highway Serang Banten). Teknika Jurnal Sains dan Teknologi 17(1):26–34

    Article  Google Scholar 

  45. Lei H, Feng S, Jiang Y (2018) Geotechnical characteristics and consolidation properties of Tianjin marine clay. Geomech Eng 16(2):125–140

    Google Scholar 

  46. Li Z (2020) Experimental research on engineering properties of municipal sludge solidified with soda residue and ground granulated blast furnace slag. Dissertation, Hubei University of Technology

  47. Lin Y, Xu D, Zhao X (2020) Effect of soda residue addition and its chemical composition on physical properties and hydration products of soda residue-activated slag cementitious materials. Materials 13(7):1789

    Article  Google Scholar 

  48. Liu Y, Jiang YJ, Xiao H, Lee FH (2017) Determination of representative strength of deep cement-mixed clay from core strength data. Géotechnique 67(4):350–364. https://doi.org/10.1680/jgeot.16.P.105

    Article  Google Scholar 

  49. Liu L, Zhou A, Deng Y, Cui Y, Yu Z, Yu C (2019) Strength performance of cement/slag-based stabilized soft clays. Constr Build Mater 211:909–918

    Article  Google Scholar 

  50. Lopes EC, Oliveira T, da Silva H, Pitanga N, Pedroti LG, Franco JM, de Carvalho G, Nalon H, Soares GE, de Lima M, Rodrigues HR (2021) Application of electric arc furnace slag for stabilisation of different tropical soils. Int J Pavement Eng. https://doi.org/10.1080/10298436.2021.1990289

    Article  Google Scholar 

  51. Mahieux P-Y, Aubert J-E, Escadeillas G (2008) Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Construct Build Mater 23(2):742–747

    Article  Google Scholar 

  52. Marini F, Walczak B (2015) Particle swarm optimization (PSO). A tutorial. Chemom Intell Lab Syst 149:153–165

    Article  Google Scholar 

  53. Mathew BJ, Sudhakar M, Natarajan C (2013) Strength, economic and sustainability characteristics of coal ash–GGBS based geopolymer concrete. Int J Comput Eng Res 3(1):207–212

    Google Scholar 

  54. Matin S, Farahzadi L, Makaremi S, Chelgani SC, Sattari G (2018) Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest. Appl Soft Comput 70:980–987

    Article  Google Scholar 

  55. Ménard L, Broise Y (1975) Theoretical and practical aspect of dynamic consolidation. Géotechnique 25(1):3–18

    Article  Google Scholar 

  56. Mohamad ET, Armaghani DJ, Momeni E, Yazdavar AH, Ebrahimi M (2018) Rock strength estimation: a PSO-based BP approach. Neural Comput Appl 30(5):1635–1646

    Article  Google Scholar 

  57. Mohammed A, Hummadi RA, Mawlood YI (2021) Predicting the chemical and mechanical properties of gypseous soils using different simulation technics. Acta Geotech. https://doi.org/10.1007/s11440-021-01304-8

    Google Scholar 

  58. Momeni E, Armaghani DJ, Hajihassani M, Amin MFM (2015) Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60:50–63

    Article  Google Scholar 

  59. Motamedi S, Shamshirband S, Petković D, Hashim R (2015) Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA-sand-cement mixture. Powder Technol 278:278–285

    Article  Google Scholar 

  60. Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manage (Oxford) 21(3):285–293

    Article  Google Scholar 

  61. Mozumder RA, Laskar AI, Hussain M (2017) Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Construct Build Mater 132:412–424

    Article  Google Scholar 

  62. Neocleous K, Tlemat H, Pilakoutas K (2006) Design issues for concrete reinforced with steel fibers, including fibers recovered from used tires. J Mater Civ Eng 18(5):677–685

    Article  Google Scholar 

  63. Niroshan N, Sivakugan N, Veenstra RL (2017) Laboratory study on strength development in cemented paste backfills. J Mater Civ Eng 29(7):04017027

    Article  Google Scholar 

  64. Onyelowe KC, Jalal FE, Onyia ME, Onuoha IC, Alaneme GU (2021) Application of gene expression programming to evaluate strength characteristics of hydrated-lime-activated rice husk ash-treated expansive soil. Appl Comput Intell Soft Comput 2021(3):1–17

    Google Scholar 

  65. Ozdemir MA (2016) Improvement in bearing capacity of a soft soil by addition of fly ash. Proc Eng 143:498–505

    Article  Google Scholar 

  66. Wang X, Dong X, Zhang Z, Zhang J, Ma G, Yang X (2022) Compaction quality evaluation of subgrade based on soil characteristics assessment using machine learning. Transp Geotech 32(2022):100703

    Article  Google Scholar 

  67. Palod R, Deo S, Ramtekkar G (2019) Utilization of waste from steel and iron industry as replacement of cement in mortars. J Mater Cycles Waste Manage 21(6):1361–1375

    Article  Google Scholar 

  68. Payá J, Monzó J, Borrachero M (1999) Fluid catalytic cracking catalyst residue (FC3R): an excellent mineral by-product for improving early-strength development of cement mixtures. Cem Concr Res 29(11):1773–1779

    Article  Google Scholar 

  69. Pu S, Zhu Z, Huo W (2021) Evaluation of engineering properties and environmental effect of recycled gypsum stabilized soil in geotechnical engineering: a comprehensive review. Resour Conserv Recycl 174:105780

    Article  Google Scholar 

  70. Qiang W, Mengxiao S, Jun Y (2016) Influence of classified steel slag with particle sizes smaller than 20μm on the properties of cement and concrete. Construct Build Mater 123:601–610

    Article  Google Scholar 

  71. Qin Y-H, Liu F-H, Zhou Q (2008) Influencing factors of compressive strength of solidified inshore saline soil using SH lime-ash. J Cent South Univ Technol 15(1):386–390

    Article  Google Scholar 

  72. Richard JA, Sa’don NM, Karim ARA (2021) Artificial neural network (ANN) model for shear strength of soil prediction. Defect Diffus Forum 411:157–168

    Article  Google Scholar 

  73. RIOH (2009) Test methods of materials stabilized with inorganic binders for highway engineering (JTG E51–2009). China Communications Press Beijing

  74. Risal S, Zhu W, Guillen P, Sun L (2021) Improving phase prediction accuracy for high entropy alloys with Machine learning. Computat Mater Sci 192:110389

    Article  Google Scholar 

  75. Rizki AS, Bakri AMMA, Romisuhani A, Abd RSZ, Małgorzata R, Izabela W, Marcin N, Krzysztof M, Mohd TMF, Syafwandi I, Muhammad GM (2021) Evaluation on the mechanical properties of ground granulated blast slag (GGBS) and fly ash stabilized soil via geopolymer process. Materials (Basel, Switzerland) 14(11):2833

    Article  Google Scholar 

  76. Sarfo P, Das A, Wyss G, Young C (2017) Recovery of metal values from copper slag and reuse of residual secondary slag. Waste Manag 70:272–281. https://doi.org/10.1016/j.wasman.2017.09.024

    Article  Google Scholar 

  77. Sen T, Mishra U (2010) Usage of industrial waste products in villageroad construction. Int J Environ Sci Dev 1(2):122

    Article  Google Scholar 

  78. Senol A, Edil TB, Bin-Shafique MS, Acosta HA, Benson CH (2006) Soft subgrades’ stabilization by using various fly ashes. Resour Conserv Recycl 46(4):365–376

    Article  Google Scholar 

  79. Shahmansouri AA, Yazdani M, Ghanbari S, Akbarzadeh Bengar H, Jafari A, Farrokh Ghatte H (2021) Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697

    Article  Google Scholar 

  80. Shao Y, Liu X, Zhu J (2019) Experimental study on the improvement of marine soft soil by alkali residue. Water Power 45(04):120–124

    Google Scholar 

  81. Shi X (2020) Study on properties of dredged soil at high watercontent solidified soil with soda residue. Dissertation, Hubei University of Technology

  82. Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. Int Conf Evol Program pp 519–600

  83. Shivaramaiah A, Shankar R, Singh A, Pammar KH (2020) Utilization of lateritic soil stabilized with alkali solution and ground granulated blast furnace slag as a base course in flexible pavement construction. Int J Pavement Res Technol 13(5):478–488. https://doi.org/10.1007/s42947-020-0251-5

    Article  Google Scholar 

  84. Soranzo E, Guardiani C, Wu W (2021) A soft computing approach to tunnel face stability in a probabilistic framework. Acta Geotech. https://doi.org/10.1007/s11440-021-01240-7

    Google Scholar 

  85. Stevens J (1982) Unified soil classification system. Civ Eng ASCE. 52(12):61–62

    Google Scholar 

  86. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc: Ser B (Methodol) 36(2):111–133

    MathSciNet  MATH  Google Scholar 

  87. Sun J, Gu X (2014) Engineering properties of the new non-clinker incorporating soda residue solidified soil. J Build Mater 17(06):1031–1035

    Google Scholar 

  88. Sun Y, Li G, Zhang N, Chang Q, Xu J, Zhang J (2021) Development of ensemble learning models to evaluate the strength of coal-grout materials. Int J Min Sci Technol 31(2):153–162

    Article  Google Scholar 

  89. Tapu T, Palit S, Sabbir M (2022) Impact of slag percentages on soil CBR for sub-surface layers of flexible pavement. Adv Civil Eng 184:351–362

    Article  Google Scholar 

  90. Topkaya Y, Sevinç N, Günaydın A (2004) Slag treatment at Kardemir integrated iron and steel works. Int J Miner Proces 74(1–4):31–39. https://doi.org/10.1016/j.minpro.2003.08.005

    Article  Google Scholar 

  91. Trinh SH, Quynh A, Thi B (2018) Influencing of clay and binder content on compression strength of soft soil stabilized by geopolymer based fly ash. Int J Appl Eng Res 13:7954–7958

    Google Scholar 

  92. Tsai C-J, Huang R, Lin W-T, Wang H-N (2014) Mechanical and cementitious characteristics of ground granulated blast furnace slag and basic oxygen furnace slag blended mortar. Mater Des 60:267–273

    Article  Google Scholar 

  93. Wang X (2019) Experimental research on engineering properties of soft soil solidified with soda residue and ground granulated blast furnace slag. Dissertation, Hubei University of Technology

  94. Wang X, Liu Y, Xin H (2021) Bond strength prediction of concrete-encased steel structures using hybrid machine learning method. Structures 32:2279–2292

    Article  MathSciNet  Google Scholar 

  95. Wang Q, Yan P (2010) Characteristics of hydration products of steel slag. J Chin Ceramic Soc 38(9):1731–1734

    Google Scholar 

  96. Wang C, Yuan Y, Liang F, Yu XB (2021) Investigating the effect of grain composition on the erosion around deepwater foundations with a new simplified scour resistance test. Transp Geotech 28:100527

    Article  Google Scholar 

  97. Wang W, Zhang C, Li N, Tao F, Yao K (2019) Characterisation of nano magnesia–cement-reinforced seashore soft soil by direct-shear test. Mar Georesour Geotechnol 37(8):989–998

    Article  Google Scholar 

  98. Wang L, Zhang B, Xie H, Ji W, Huang X (2021) Study on shear strength characteristics of marine silt modified by steel slag. Adv Civ Eng 2021:1–15. https://doi.org/10.1155/2021/9647977

    Google Scholar 

  99. Wang L, Zhao X, Zhou B (2020) Synthesis and characterization of fly ash geopolymer paste for goaf backfill: reuse of soda residue. J Clean Prod 260:121045

    Article  Google Scholar 

  100. Weerdt KD, Justnes H (2015) The effect of sea water on the phase assemblage of hydrated cement paste. Cem Concr Compos 55:215

    Article  Google Scholar 

  101. Wong BYF, Wong KS, Phang IRK (2019) A review on geopolymerisation in soil stabilization. IOP Conf Ser Mater Sci Eng 495(1):012070

    Article  Google Scholar 

  102. Wu Y, Hu X, Hu R, Han T, Yu J (2017) Study on the application of an activator for steel slag powder–cement in muddy soil. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2017.1357872

    Article  Google Scholar 

  103. Wu J, Xuan Y, Deng Y, Li X, Zha F, Zhou A (2021) Combined vacuum and surcharge preloading method to improve lianyungang soft marine clay for embankment widening project: a case. Geotext Geomembr 49(2):452–465

    Article  Google Scholar 

  104. Xu S (2019) Investigation on soft soil solidified by cement-soda residue. Dissertation, Hefei University of Technology

  105. Yang C, Xie J (2010) A new embankment filling technic applied on muddy soil by using alkali slag and waste cement concrete as modification. Highway Eng 35(01):72–75

    Google Scholar 

  106. Yi Y, Liska M, Jin F, Al-Tabbaa A (2015) Mechanism of reactive magnesia – ground granulated blastfurnace slag (GGBS) soil stabilization. NRC Research Press 53(5):773

    Google Scholar 

  107. Shao Y, Liu X, Zhu J (2019) Experimental study on the improvement of marine soft soil by alkali residue. Water Power 45(04):120–124

    Google Scholar 

  108. Yong-Feng D, Tong-Wei Z, Yu Z, Qian-Wen L, Qiong W (2017) Mechanical behaviour and microstructure of steel slag-based composite and its application for soft clay stabilisation. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2017.1357787

    Article  Google Scholar 

  109. Yu J, Chen Y, Chen G, Wang L (2020) Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization. Eng Geol. 264:105316

    Article  Google Scholar 

  110. Yu C, Cui C, Zhao J, Zheng J (2021) A novel approach to utilizing dredged materials at the laboratory scale. Construct Build Mater 313:125568

    Article  Google Scholar 

  111. Zainab S, Zainab A, Jafer H, Dulaimi A, Atherton W (2018) The effect of using fluid catalytic cracking catalyst residue (FC3R)" as a cement replacement in soft soil stabilisation". Int J Civ Eng Technol 9(4):522–533

    Google Scholar 

  112. Zhang J, Li S, Li Z (2020) Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks. J Clean Prod 273:122972

    Article  Google Scholar 

  113. Zhang J, Ma G, Huang Y, Aslani F, Nener B (2019) Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Construct Build Mater 210:713–719

    Article  Google Scholar 

  114. Zhang X, Ma G, Tong Z, Xue Z (2017) Microwave-assisted selective leaching behavior of calcium from Basic Oxygen Furnace (BOF) slag with ammonium chloride solution. J Min Metall 53:139

    Article  Google Scholar 

  115. Zhang T, Yue X, Deng Y, Zhang D, Liu S (2014) Mechanical behaviour and micro-structure of cement-stabilised marine clay with a metakaolin agent. Constr Build Mater 73:51–57

    Article  Google Scholar 

  116. Zhang P, Zhao X, Jiang D, Xu S, Zong Z (2020) Experimental study on strength properties and water stability of suda residue soft soil. Highway 65(02):212–218

    Google Scholar 

  117. Zhao X, Liu C, Wang W, Zhu N (2017) Experimental research on physical and mechanical properties of soda residue mixing soils used for filling embankment. Bull Chin Ceram Soc 36(04):1406–1411

    Google Scholar 

Download references

Acknowledgements

The funding supports from the National Natural Science Foundation of China (No.51908185, No.51909054), and Hebei Natural Science Foundation (No. E2021202215) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiale Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Z., Song, Z. et al. Engineering properties of marine soft clay stabilized by alkali residue and steel slag: an experimental study and ANN model. Acta Geotech. 17, 5089–5112 (2022). https://doi.org/10.1007/s11440-022-01498-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01498-5

Keywords

Navigation