Skip to main content
Log in

Interval prediction of landslide displacement with dual-output least squares support vector machine and particle swarm optimization algorithms

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

For landslide displacement, interval predictions are generally more realistic and reliable compared with traditional point predictions. This paper presents a new interval prediction method for landslide displacement integrating dual-output least squares support vector machine (DO-LSSVM) and particle swarm optimization (PSO) algorithms. In this new method, the PSO algorithm is employed to optimize coefficients of the least squares support vector machine (LSSVM) model for obtaining point prediction results, and the interval prediction of the landslide displacement is made based on the dual-outputs obtained from the DO-LSSVM model. To assess the rationality of the predictions, three performance evaluation indicators, including the prediction interval coverage probability (PICP), normalized mean prediction interval width (NMPIW), and coverage width-based criterion (CWC), are established. Case studies of the Tanjiahe landslide and the Baishuihe landslide in the Three Gorges Reservoir region are then used to demonstrate the effectiveness of the proposed method in predicting the landslide displacement interval. The case study results demonstrate that this new method has the best overall performance compared with other existing methods, and this new method can provide accurate and reliable results for the medium- to long-term interval prediction of landslide displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Borja RI, White JA (2010) Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotech 5(1):1–14

    Article  Google Scholar 

  2. Cai Z, Xu W, Meng Y, Shi C, Wang R (2016) Prediction of landslide displacement based on GA-LSSVM with multiple factors. Bull Eng Geol Env 75(2):637–646

    Article  Google Scholar 

  3. Calvello M, Cascini L, Sorbino G (2008) A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfaces. Int J Numer Anal Meth Geomech 32(4):327–351

    Article  MATH  Google Scholar 

  4. Chen L, Zhang W, Zheng Y, Gu D, Wang L (2020) Stability analysis and design charts for over-dip rock slope against bi-planar sliding. Eng Geol 275:105732

    Article  Google Scholar 

  5. Chen W, Panahi M, Pourghasemi HR (2017) Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. CATENA 157:310–324

    Article  Google Scholar 

  6. Cheng Z, Gong W, Tang H, Juang CH, Deng Q, Chen J, Ye X (2021) UAV photogrammetry-based remote sensing and preliminary assessment of the behavior of a landslide in Guizhou, China. Eng Geol 106172

  7. Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2(2):83–96

    Article  Google Scholar 

  8. Dai FC, Lee CF, Nagi YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87

    Article  Google Scholar 

  9. De Brabanter K, De Brabanter J, Suykens JA, De Moor B (2010) Approximate confidence and prediction intervals for least squares support vector regression. IEEE Trans Neural Networks 22(1):110–120

    Article  Google Scholar 

  10. Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87

    Article  Google Scholar 

  11. Eubank RL, Speckman PL (1993) Confidence bands in nonparametric regression. J Am Stat Assoc 88(424):1287–1301

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao X, Liu H, Zhang W, Wang W, Wang Z (2019) Influences of reservoir water level drawdown on slope stability and reliability analysis. Georisk: Assess Manag Risk Eng Syst Geohazards 13(2):145–153

    Google Scholar 

  13. Ge Q, Sun H, Liu Z, Yang B, Lacasse S, Nadim F (2021) A novel approach for displacement interval forecasting of landslides with step-like displacement pattern. Georisk: Assess Manage Risk Eng Syst Geohazards 1–15

  14. Gong W, Juang CH, Wasowski J (2021) “Geohazards and human settlements: lessons learned from multiple relocation events in Badong, China—engineering geologist’s perspective. Eng Geol 285(7724):106051

    Article  Google Scholar 

  15. Gong W, Zhao C, Juang CH, Tang H, Wang H, Hu X (2020) “Stratigraphic uncertainty modelling with random field approach. Comput Geotech 125:103681

    Article  Google Scholar 

  16. Herrera G, Fernández-Merodo JA, Mulas J, Pastor M, Luzi G, Monserrat O (2009) A landslide forecasting model using ground based SAR data: the Portalet case study. Eng Geol 105(3–4):220–230

    Article  Google Scholar 

  17. Helmstetter A, Sornette D, Grasso JR, Andersen JV, Gluzman S, and Pisarenko V (2004) Slider block friction model for landslides: application to Vaiont and La Clapiere landslides. J Geophys Res Solid Earth, 109(B2).

  18. Huang F, Huang J, Jiang S, Zhou C (2017) Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Eng Geol 218:173–186

    Article  Google Scholar 

  19. Knafl G, Sacks J, Ylvisaker D (1985) Confidence bands for regression functions. J Am Stat Assoc 80(391):683–691

    Article  MathSciNet  MATH  Google Scholar 

  20. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international Conference on Neural Networks, Perth, Australia, pp 1942–1948

  21. Khosravi A, Nahavandi S, Creighton D, Atiya AF (2010) Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans Neural Networks 22(3):337–346

    Article  Google Scholar 

  22. Loader C (2006) Local regression and likelihood. Springer, Berlin

    MATH  Google Scholar 

  23. Li R, Jin Y (2018) A wind speed interval prediction system based on multi-objective optimization for machine learning method. Appl Energy 228:2207–2220

    Article  Google Scholar 

  24. Lian C, Zeng Z, Wang X, Yao W, Su Y, Tang H (2020) Landslide displacement interval prediction using lower upper bound estimation method with pre-trained random vector functional link network initialization. Neural Netw 130:286–296

    Article  Google Scholar 

  25. Lian C, Zeng Z, Yao W, Tang H, Chen CLP (2016) Landslide displacement prediction with uncertainty based on neural networks with random hidden weights. IEEE Trans Neural Netw Learn Syst 27(12):2683–2695

    Article  Google Scholar 

  26. Ma J, Tang H, Liu X, Hu X, Sun M, Song Y (2017) Establishment of a deformation forecasting model for a step-like landslide based on decision tree C5. 0 and two-step cluster algorithms: a case study in the Three Gorges Reservoir area, China. Landslides 14(3):1275–1281

    Article  Google Scholar 

  27. Ma J, Tang H, Liu X, Wen T, Zhang J, Tan Q, Fan Z (2018) Probabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the Three Gorges Reservoir area, China. Landslides 15(6):1145–1153

    Article  Google Scholar 

  28. Miao F, Wu Y, Li L, Tang H, Xiong F (2019) Weakening laws of slip zone soils during wetting-drying cycles based on fractal theory: a case study in the Three Gorges Reservoir (China). Acta Geotech 15(7):1909–1923

    Article  Google Scholar 

  29. Miao F, Wu Y, Xie Y, Li Y (2018) Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides 15(3):475–488

    Article  Google Scholar 

  30. Moayedi H, Mehrabi M, Mosallanezhad M, Rashid ASA, Pradhan B (2019) Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng Comput 35(3):967–984

    Article  Google Scholar 

  31. Pardo M, Sberveglieri G (2005) Classification of electronic nose data with support vector machines. Sens Actuators, B Chem 107(2):730–737

    Article  Google Scholar 

  32. Quan H, Srinivasan D, Khosravi A (2014) Particle swarm optimization for construction of neural network-based prediction intervals. Neurocomputing 127:172–180

    Article  Google Scholar 

  33. Rice SO (1939) The distribution of the maxima of a random curve. Am J Math 61(2):409–416

    Article  MathSciNet  MATH  Google Scholar 

  34. Saito M (1965). Forecasting the time of occurrence of a slope failure. In: Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, pp. 537–541.

  35. Sassa K, Picarelli L, Yueping Y (2009) Monitoring, prediction and early warning. In: Landslides-disaster risk reduction. Springer, Berlin

    Chapter  Google Scholar 

  36. Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, D.C., USA, pp 1945–1950

  37. Shihabudheen KV, Pillai GN, Peethambaran B (2017) Prediction of landslide displacement with controlling factors using extreme learning adaptive neuro-fuzzy inference system (ELANFIS). Appl Soft Comput 61:892–904

    Article  Google Scholar 

  38. Shrivastava NA, Khosravi A, Panigrahi BK (2015) Prediction interval estimation of electricity prices using PSO-tuned support vector machines. IEEE Trans Industr Inf 11(2):322–331

    Article  Google Scholar 

  39. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  40. Tang H, Wasowski J, Juang CH (2019) Geohazards in the three Gorges reservoir area, China-Lessons learned from decades of research. Eng Geol 261:105267

    Article  Google Scholar 

  41. Wang JF (2003) Quantitative prediction of landslide using S-curve. China J Geol Hazard Control 14:1–8

    Google Scholar 

  42. Wang J, Wang S, Su A, Xiang W, Xiong C, and Blum P (2021) Simulating landslide-induced tsunamis in the Yangtze River at the Three Gorges in China. Acta Geotech 1–17.

  43. Wang J, Xiang W, Lu N (2014) Landsliding triggered by reservoir operation: a general conceptual model with a case study at Three Gorges Reservoir. Acta Geotech 9(5):771–788

    Article  Google Scholar 

  44. Wang L, Wu C, Li Y, Liu H, Zhang W, Chen X (2019) Probabilistic risk assessment of unsaturated slope failure considering spatial variability of hydraulic parameters. KSCE J Civ Eng 23(12):5032–5040

    Article  Google Scholar 

  45. Wang Y, Tang H, Wen T, Ma J (2019) A hybrid intelligent approach for constructing landslide displacement prediction intervals. Appl Soft Comput 81:105506

    Article  Google Scholar 

  46. Wang Y, Tang H, Wen T, Ma J (2020) Direct interval prediction of landslide displacements using least squares support vector machines. Complexity 2020:7082594

    Google Scholar 

  47. Wang Y, Tang H, Wen T, Ma J, Zou Z, Xiong C (2019) Point and interval predictions for Tanjiahe landslide displacement in the Three Gorges Reservoir Area, China. Geofluids 2019:8985325

    Article  Google Scholar 

  48. Wen T, Tang H, Wang Y, Lin C, Xiong C (2017) Landslide displacement prediction using the GA-LSSVM model and time series analysis: a case study of Three Gorges Reservoir, China. Nat Hazard 17(12):2181–2198

    Article  Google Scholar 

  49. Xing Y, Yue J, Chen C (2019) Interval estimation of landslide displacement prediction based on time series decomposition and long short-term memory network. IEEE Access 8:3187–3196

    Article  Google Scholar 

  50. Xue X (2017) Prediction of slope stability based on hybrid PSO and LSSVM. J Comput Civ Eng 31(1):04016041

    Article  Google Scholar 

  51. Yang B, Yin K, Lacasse S, Liu Z (2019) Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides 16(4):677–694

    Article  Google Scholar 

  52. Zhang J, Yin K, Wang J, Huang F (2015) Displacement prediction of baishuihe landslide based on time series and PSO-SVR model. Chin J Rock Mech Eng 34(2):382–391

    Google Scholar 

  53. Zhang W, Goh AT, Zhang Y (2015) Probabilistic assessment of serviceability limit state of diaphragm walls for braced excavation in clays. ASCE-ASME J Risk Uncertain Eng Syst Part A Civil Eng 1(3):06015001

    Article  Google Scholar 

  54. Zhang W, Niu P, Li G, Li P (2013) Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm. Knowl-Based Syst 39:34–44

    Article  Google Scholar 

  55. Zhang W, Tang L, Li H, Wang L, Cheng L, Zhou T, Chen X (2020) Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges Reservoir, China. Front Struct Civ Eng 14(5):1247–1261

    Article  Google Scholar 

  56. Zhang W, Wu C, Zhong H, Li Y, Wang L (2021) Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci Front 12(1):469–477

    Article  Google Scholar 

  57. Zhou C, Yin K, Cao Y, Ahmed B (2016) Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China. Eng Geol 204:108–120

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided by the Major Program of National Natural Science Foundation of China (No. 42090055), the National Natural Science Foundation of China (No. 41977242), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUGGC09) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Tian, S., Wang, L. et al. Interval prediction of landslide displacement with dual-output least squares support vector machine and particle swarm optimization algorithms. Acta Geotech. 17, 4013–4031 (2022). https://doi.org/10.1007/s11440-022-01455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01455-2

Keywords

Navigation