Skip to main content

Advertisement

Log in

Kitchen waste for Sporosarcina pasteurii cultivation and its application in wind erosion control of desert soil via microbially induced carbonate precipitation

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Kitchen waste and wind erosion are two worldwide environmental concerns. This study investigated the feasibility of using kitchen waste for Sporosarcina pasteurii cultivation and its application in wind erosion control of desert soil via microbially induced carbonate precipitation (MICP). Enzymatic hydrolysis was adopted to improve the release and recovery of protein in kitchen waste for subsequent microorganism production. After conditions optimized, the maximum biomass concentration (OD600) and urease activity of Sporosarcina pasteurii in the kitchen waste-based medium reached 4.19, and 14.32 mM urea min−1, respectively, which were comparable to those obtained in conventional standard media. The harvested Sporosarcina pasteurii was then used to catalyze the precipitation of calcium carbonate in the desert soil, and its performance in wind erosion control was evaluated through wind tunnel tests. The microbially mediated calcium carbonate could significantly decrease wind erosion loss of the desert soil even after 12 wet–dry or freeze–thaw cycles. Scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) confirmed the bridge effect of calcium carbonate crystals in the soil matrix. The kitchen waste, as a cost-effective alternative nutrient for bacterial cultivation and carbonate precipitation, showed great potential for large-scale applications in wind erosion control of desert soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. Microbiol Biotechnol 36:433–438. https://doi.org/10.1007/s10295-008-0514-7

    Article  Google Scholar 

  2. Achal V, Mukherjee A, Reddy MS (2010) Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source. Ind Biotech 6(3):170–174. https://doi.org/10.1007/s10295-018-2050-4

    Article  Google Scholar 

  3. Al-Thawadi S (2008) High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria. Phd Thesis, Murdoch University

  4. Amiraslani F, Dragovich D (2011) Combating desertification in Iran over the last 50 years: an overview of changing approaches. J Environ Manage 92(1):1–13. https://doi.org/10.1016/j.jenvman.2010.08.012

    Article  Google Scholar 

  5. Chang I, Prasidhi AK, Im J, Shi HD, Cho GC (2015) Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253:39–47. https://doi.org/10.1016/j.geoderma.2015.04.006

    Article  Google Scholar 

  6. Chen F, Deng C, Song W, Zhang D, Al-Misned FA, Mortuza MG, Gadd GM, Pan X (2016) Biostabilization of desert sands using bacterially induced calcite precipitation. Geomicrobiol J 33:243–249. https://doi.org/10.1080/01490451.2015.1053584

    Article  Google Scholar 

  7. Cheng L, Shahin M, Chu J (2019) Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotech 14(3):615–626. https://doi.org/10.1007/s11440-018-0738-2

    Article  Google Scholar 

  8. Cheng L, Shahin MA, Mujah D (2017) Influence of key environmental conditions on microbially induced cementation for soil stabilization. J Geotech Geoenviron 143(1):04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586

    Article  Google Scholar 

  9. Chu J, Stabnikov V, Ivanov V (2012) Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiol J 29(6):544–549. https://doi.org/10.1080/01490419.2011.592929

    Article  Google Scholar 

  10. Ciantia MO, Castellanza R, Di Prisco C (2015) Experimental study on the water-induced weakening of calcarenites. Rock Mech Rock Eng 48(2):441–461. https://doi.org/10.1007/s00603-014-0603-z

    Article  Google Scholar 

  11. DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron 132(11):1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)

    Article  Google Scholar 

  12. Gao L, Bowker MA, Xu M, Sun H, Tuo D, Zhao Y (2017) Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biol Biochem 105:49–58. https://doi.org/10.1016/j.soilbio.2016.11.009

    Article  Google Scholar 

  13. Gao Y, Hang L, He J, Chu J (2019) Mechanical behaviour of biocemented sands at various treatment levels and relative densities. Acta Geotech 14(3):697–707. https://doi.org/10.1007/s11440-018-0729-3

    Article  Google Scholar 

  14. Gao Y, Tang X, Chu J, He J (2019) Microbially induced calcite precipitation for seepage control in sandy soil. Geomicrobiol J 36(4):366–375. https://doi.org/10.1080/01490451.2018.1556750

    Article  Google Scholar 

  15. Hamdan N, Kavazanjian EJ (2016) Enzyme-induced carbonate mineral precipitation for fugitive dust control. Geotechnique 66(7):546–555. https://doi.org/10.1680/jgeot.15.P.168

    Article  Google Scholar 

  16. He J, Gao Y, Gu Z, Chu J, Wang L (2020) Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand. J Mater Civil Eng 32(5):04020071. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100

    Article  Google Scholar 

  17. Jiang NJ, Soga K, Kuo M (2017) Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures. J Geotech Geoenviron 143(3):04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559

    Article  Google Scholar 

  18. Kahani M, Kalantary F, Soudi MR, Pakdel L, Aghaalizadeh S (2020) Optimization of cost effective culture medium for Sporosarcina pasteurii as biocementing agent using response surface methodology: Up cycling dairy waste and seawater. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120022

    Article  Google Scholar 

  19. Lai H, Cui M, Wu S, Yang Y, Chu J (2021) Retarding effect of concentration of cementation solution on biocementation of soil. Acta Geotech 16:1457–1472. https://doi.org/10.1007/s11440-021-01149-1

    Article  Google Scholar 

  20. Li P, Xie Y, Zeng Y, Hu W, Kang Y, Li X, Wang Y, Xie T, Zhang Y (2017) Bioconversion of Welan Gum from Kitchen waste by a two-step enzymatic hydrolysis pretreatment. Appl Biochem Biotech 183(3):820–832. https://doi.org/10.1007/s12010-017-2466-8

    Article  Google Scholar 

  21. Li P, Zeng Y, Xie Y, Li X, Kang Y, Wang Y, Xie T, Zhang Y (2017) Effect of pretreatment on the enzymatic hydrolysis of kitchen waste for xanthan production. Bioresour Technol 223:84–90. https://doi.org/10.1016/j.biortech.2016.10.035

    Article  Google Scholar 

  22. Lo CY, Tirkolaei HK, Hua M, De Rosa IM, Carlson L, Kavazanjian E Jr, He X (2020) Durable and ductile double-network material for dust control. Geoderma 361:114090. https://doi.org/10.1016/j.geoderma.2019.114090

    Article  Google Scholar 

  23. Maleki M, Ebrahimi S, Asadzadeh F, Tabrizi ME (2016) Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. Int J Environ Sci Te 13(3):937–944. https://doi.org/10.1007/s13762-015-0921-z

    Article  Google Scholar 

  24. Meng H, Gao Y, He J, Qi Y, Hang L (2021) Microbially induced carbonate precipitation for wind erosion control of desert soil: field-scale tests. Geoderma 383:114723. https://doi.org/10.1016/j.geoderma.2020.114723

    Article  Google Scholar 

  25. Mukherjee AK, Adhikari H, Rai SK (2008) Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation. Biochem Eng J 39(2):353–361. https://doi.org/10.1016/j.bej.2007.09.017

    Article  Google Scholar 

  26. Mwandira W, Nakashima K, Kawasaki S, Ito M, Sato T, Igarashi T, Chirwa M, Banda K, Nyambe I, Nakayama S, Nakata H, Nakata H, Ishizuka M (2019) Solidification of sand by Pb (II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia. Chemosphere 228:17–25. https://doi.org/10.1016/j.chemosphere.2019.04.107

    Article  Google Scholar 

  27. Nafisi A, Safavizadeh S, Montoya BM (2019) Influence of microbe and enzyme-induced treatments on cemented sand shear response. J Geotech Geoenviron 145(9):06019008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002111

    Article  Google Scholar 

  28. Nikseresht F, Landi A, Sayyad G, Ghezelbash G, Schulin R (2020) Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. J Environ Manage 268:110639. https://doi.org/10.1016/j.jenvman.2020.110639

    Article  Google Scholar 

  29. Okwadha GD, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81(9):1143–1148. https://doi.org/10.1016/j.chemosphere.2010.09.066

    Article  Google Scholar 

  30. Omoregie AI, Khoshdelnezamiha G, Senian N, Ong DEL, Nissom PM (2017) Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecol Eng 109:65–75. https://doi.org/10.1016/j.ecoleng.2017.09.012

    Article  Google Scholar 

  31. Pan X, Chu J, Yang Y, Cheng L (2020) A new biogrouting method for fine to coarse sand. Acta Geotech 15:1–16. https://doi.org/10.1007/s11440-019-00872-0

    Article  Google Scholar 

  32. Peng C, Zheng J, Huang S, Li S, Li D, Cheng M, Liu Y (2017) Application of sodium alginate in induced biological soil crusts: enhancing the sand stabilization in the early stage. J Appl Phycol 29(3):1421–1428. https://doi.org/10.1007/s10811-017-1061-2

    Article  Google Scholar 

  33. Ren Y, Yu M, Wu C, Wang Q, Gao M, Huang Q, Liu Y (2018) A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Bioresour Technol 247:1069–1076. https://doi.org/10.1016/j.biortech.2017.09.109

    Article  Google Scholar 

  34. Sindhu R, Gnansounou E, Rebello S, Binod P, Varjani S, Thakur ISB, Nair R, Pandey A (2019) Conversion of food and kitchen waste to value-added products. J Environ Manage 241:619–630. https://doi.org/10.1016/j.jenvman.2019.02.053

    Article  Google Scholar 

  35. Stabnikov V, Chu J, Myo AN, Ivanov V (2013) Immobilization of sand dust and associated pollutants using bioaggregation. Water Air Soil Poll 224(9):1–9. https://doi.org/10.1007/s11270-013-1631-0

    Article  Google Scholar 

  36. Wang Z, Zhang N, Ding J, Lu C, Jin Y (2018) Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation. Adv Mater Sci Eng. https://doi.org/10.1155/2018/3463298

    Article  Google Scholar 

  37. Whiffin VS (2004) Microbial CaCO3 precipitation for the production of biocement, Ph.D. Thesis, Murdoch University

  38. Wu C, Chu J, Wu S, Cheng L, van Paassen LA (2019) Microbially induced calcite precipitation along a circular flow channel under a constant flow condition. Acta Geotech 14:673–683. https://doi.org/10.1007/s11440-018-0747-1

    Article  Google Scholar 

  39. Yang Y, Ruan S, Wu S, Unluer C, Liu H, Cheng L (2021) Biocarbonation of reactive magnesia for soil improvement. Acta Geotech 16:1113–1125. https://doi.org/10.1007/s11440-020-01093-6

    Article  Google Scholar 

  40. Yoosathaporn S, Tiangburanatham P, Bovonsombut S, Chaipanich A, Pathom-Aree W (2016) A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties. Microbiol Res 186:132–138. https://doi.org/10.1016/j.micres.2016.03.010

    Article  Google Scholar 

  41. Zamani A, Montoya BM (2018) Undrained monotonic shear response of MICP-treated silty sands. J Geotech Geoenviron 144(6):04018029. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001861

    Article  Google Scholar 

  42. Zomorodian SMA, Ghaffari H, O’Kelly BC (2019) Stabilisation of crustal sand layer using biocementation technique for wind erosion control. Aeolian Res 40:34–41. https://doi.org/10.1016/j.aeolia.2019.06.001

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 51978244 and 51979088). The authors are grateful for this support. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not reflect the views of the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H., Shu, S., Gao, Y. et al. Kitchen waste for Sporosarcina pasteurii cultivation and its application in wind erosion control of desert soil via microbially induced carbonate precipitation. Acta Geotech. 16, 4045–4059 (2021). https://doi.org/10.1007/s11440-021-01334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01334-2

Keywords

Navigation