Skip to main content
Log in

Development of limiting soil slope profile under seismic condition using slip line theory

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study embraces the formation of the limiting geometry of finite slopes under the static and seismic conditions within the slip line theory framework coupled with the modified pseudo-dynamic approach. The proposed methodology is expected to achieve a global factor of safety of 1.0 for the obtained slope profile. While analysing the stability of slopes using the limit analysis or the limit equilibrium method, the cognition of the slope geometry and the nature of the slip surface need to be known in advance. Such limitations are ruled out in the present analysis with the aid of the slip line method. Further, by employing the modified pseudo-dynamic approach, the dynamic properties of soil, such as damping ratio and frequency effect, are effectively considered in this stability analysis. The consideration of the slip line theory permits to achieve an adaptive failure mechanism in the analysis. The impact of a set of parameters characterizing the input motion and the dynamic soil properties on the behaviour of a slope explains the relevance of the present modified pseudo-dynamic approach compared to the conventional pseudo-static and the original pseudo-dynamic approaches. The proposed solution serves as a measure of the seismic slope stability in accordance with the geomorphological process generally encountered in nature. Compared with the available literature, the present results propose safe, economical, and efficient design guidelines for finite slopes and intimate the need for preventive measures to enhance the stability of existing slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

a h(x, t):

Horizontal earthquake acceleration in the soil deposit at depth x and time t

a v(x, t):

Vertical earthquake acceleration in the soil deposit at depth x and time t

c :

Cohesion of soil

D :

Damping ratio of soil

f a :

Amplification factor for seismic waves

g :

Acceleration due to gravity

G :

Shear modulus of soil

h :

Height of slope

k h :

Horizontal seismic acceleration coefficient

k v :

Vertical seismic acceleration coefficient

N :

Numbers of data points along the slope profile

q :

Uniformly distributed surcharge

t :

Time

T :

Period of lateral shaking

u h0 :

Horizontal displacement amplitude at the base

u v0 :

Vertical displacement amplitude at the base

V p :

Velocity of primary wave

V s :

Velocity of shear wave

x, y :

Axes in two-dimensional Cartesian co-ordinate system

x i :

Ordinate of the ith data point along the slope profile

y ci :

Abscissa of the ith data point along the derived limiting slope profile corresponding to the ordinate xi

y li :

Abscissa of the ith data point along the known linear slope profile corresponding to the ordinate xi

X :

Body force per unit volume in the x direction

Y :

Body force per unit volume in the y direction

α h :

normalized horizontal earthquake acceleration = ah(x, t)/g

α v :

normalized horizontal earthquake acceleration = av(x, t)/g

β :

Magnitude of θ along the limiting slope profile (OA) but at the slope crest (O)

γ :

Unit weight of soil

γ s :

Shear strain

θ :

Angle made by σ1 in a counter-clockwise sense with the positive x-axis

θ g :

Magnitude of θ along the top surface of the slope (OG)

θ s :

Magnitude of θ along the limiting slope profile (OA)

λ :

First Lamé constant

ν 1, ν s :

Viscosities of soil

ρ :

Density of soil

σ :

Distance on the Mohr-stress diagram, between the centre of the Mohr circle and the point where the Coulomb’s linear failure envelope joins with the σ-axis

σ 1 :

Major principal stress

σ g :

Magnitude of σ along the top surface of the slope (OG)

σ s :

Magnitude of σ along the limiting slope profile (OA)

σ x :

Normal stress on the x plane

σ y :

Normal stress on the y plane

τ :

Shear stress

τ xy :

Shear stress in the xy plane

χ :

Inclination of a linear slope with the horizontal

ω :

Angular frequency of seismic wave = 2π/T

ϕ :

Angle of the internal friction of soil

References

  1. Arvin MR, Askari F, Farzaneh O (2012) Seismic behavior of slopes by lower bound dynamic shakedown theory. Comput Geotech 39:107–115. https://doi.org/10.1016/j.compgeo.2011.08.001

    Article  Google Scholar 

  2. Ausilio E, Conte E, Dente G (2000) Seismic stability analysis of reinforced slopes. Soil Dyn Earthq Eng 19(3):159–172. https://doi.org/10.1016/S0267-7261(00)00005-1

    Article  Google Scholar 

  3. Bakır BS, Akış E (2005) Analysis of a highway embankment failure associated with the 1999 Düzce, Turkey earthquake. Soil Dyn Earthq Eng 25:251–260. https://doi.org/10.1016/j.soildyn.2003.05.001

    Article  Google Scholar 

  4. Bellezza I (2014) A new pseudo-dynamic approach for Seismic active soil thrust. Geotech Geol Eng 32(2):561–576. https://doi.org/10.1007/s10706-014-9734-y

    Article  Google Scholar 

  5. Bellezza I (2015) Seismic active earth pressure on walls using a new pseudo-dynamic approach. Geotech Geol Eng 33(4):795–812. https://doi.org/10.1007/s10706-015-9860-1

    Article  Google Scholar 

  6. Chakraborty D, Choudhury D (2013) Pseudo-static and pseudo-dynamic stability analysis of tailings dam under seismic conditions. Proc Natl Acad Sci India Sect A Phys Sci 83(1):63–71. https://doi.org/10.1007/s40010-013-0069-5

    Article  Google Scholar 

  7. Chanda N, Ghosh S, Pal M (2016) Analysis of slope considering circular rupture surface. Int J Geotech Eng 10(3):288–296. https://doi.org/10.1080/19386362.2016.1142270

    Article  Google Scholar 

  8. Chanda N, Ghosh S, Pal M (2019) Seismic stability of slope using modified pseudo-dynamic method. Int J Geotech Eng 13(6):548–559. https://doi.org/10.1080/19386362.2017.1372056

    Article  Google Scholar 

  9. Chanda N (2021) Seismic stability analysis of slope assuming log-spiral rupture surface using modified pseudo-dynamic method. Int J Geotech Eng 15(2):160–170. https://doi.org/10.1080/19386362.2018.1529281

    Article  Google Scholar 

  10. Choudhury D, Basu S, Bray JD (2007) Behaviour of slopes under static and seismic conditions by limit equilibrium method. In: Sivla-Tulla F, Nicholson PG (eds) Embankments, dams, and slopes. American Society of Civil Engineers, Reston, VA, pp 1–10. https://doi.org/10.1061/40905(224)6

    Chapter  Google Scholar 

  11. Choudhury D, Nimbalkar S (2005) Seismic passive resistance by pseudo-dynamic method. Géotechnique 55(9):699–702. https://doi.org/10.1680/geot.2005.55.9.699

    Article  Google Scholar 

  12. Eskandarinejad A, Shafiee AH (2011) Pseudo-dynamic analysis of seismic stability of reinforced slopes considering non-associated flow rule. J Cent South Univ Technol 18:2091–2099. https://doi.org/10.1007/s11771-011-0948-3

    Article  Google Scholar 

  13. Fotopoulou SD, Pitilakis KD (2017) Vulnerability assessment of reinforced concrete buildings at precarious slopes subjected to combined ground shaking and earthquake induced landslide. Soil Dyn Earthq Eng 93:84–98. https://doi.org/10.1016/j.soildyn.2016.12.007

    Article  Google Scholar 

  14. Gong W, Tang H, Juang CH, Wang L (2020) Optimization design of stabilizing piles in slopes considering spatial variability. Acta Geotech. https://doi.org/10.1007/s11440-020-00960-6

    Article  Google Scholar 

  15. Gray DH (2013) Influence of slope morphology on the stability of earthen slopes. In: Meehan C, Pradel D, Pando MA, Labuz JF (eds) Geo-congress 2013. American Society of Civil Engineers, Reston, VA, pp 1895–1904. https://doi.org/10.1061/9780784412787.191

    Chapter  Google Scholar 

  16. Hazari S, Sharma RP, Ghosh S (2020) Swedish circle method for pseudo-dynamic analysis of slope considering circular failure mechanism. Geotech Geol Eng 38(3):2573–2589. https://doi.org/10.1007/s10706-019-01170-y

    Article  Google Scholar 

  17. Hazari S, Sharma RP, Ghosh S (2020) New pseudo-dynamic analysis of two-layered cohesive-frictional soil slope and its numerical validation. Front Struct Civ Eng 14(6):1492–1508. https://doi.org/10.1007/s11709-020-0679-3

    Article  Google Scholar 

  18. Hou C, Zhang T, Sun Z, Dias D, Shang M (2019) Seismic analysis of nonhomogeneous slopes with cracks using a discretization kinematic approach. Int J Geomech 19(9):04019104. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001487

    Article  Google Scholar 

  19. Jafarzadeh F, Shahrabi MM, Jahromi HF (2015) On the role of topographic amplification in seismic slope instabilities. J Rock Mech Geotech Eng 7:163–170. https://doi.org/10.1016/j.jrmge.2015.02.009

    Article  Google Scholar 

  20. Jeldes IA, Drumm EC, Yoder DC (2015) Design of stable concave slopes for reduced sediment delivery. J Geotech Geoenviron Eng 141(2):1–10. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001211

    Article  Google Scholar 

  21. Jo S-B, Ha J-G, Lee J-S, Kim D-S (2017) Evaluation of the seismic earth pressure for inverted T-shape stiff retaining wall in cohesionless soils via dynamic centrifuge. Soil Dyn Earthq Eng 92:345–357. https://doi.org/10.1016/j.soildyn.2016.10.009

    Article  Google Scholar 

  22. Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River

    Google Scholar 

  23. Leshchinsky D, San K-C (1994) Pseudostatic seismic stability of slopes: design charts. J Geotech Eng 120(9):1514–1532. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1514)

    Article  Google Scholar 

  24. Leshchinsky D, Ebrahimi S, Vahedifard F, Zhu F (2012) Extension of Mononobe-Okabe approach to unstable slopes. Soils Found 52(2):239–256. https://doi.org/10.1016/j.sandf.2012.02.004

    Article  Google Scholar 

  25. Luo Y, Fan X, Huang R, Wang Y, Yunus AP, Havenith HB (2020) Topographic and near-surface stratigraphic amplification of the seismic response of a mountain slope revealed by field monitoring and numerical simulations. Eng Geol 271:105607. https://doi.org/10.1016/j.enggeo.2020.105607

    Article  Google Scholar 

  26. Majumdar DK (1971) Stability of soil slopes under horizontal earthquake force. Géotechnique 21(1):84–88. https://doi.org/10.1680/geot.1971.21.1.84

    Article  Google Scholar 

  27. Michalowski RL (2002) Stability charts for uniform slopes. J Geotech Geoenviron Eng 128(4):351–355. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:4(351)

    Article  Google Scholar 

  28. Mononobe N, Matsuo H (1929) On the determination of earth pressure during earthquake. In: Proceedings of the world engineering conference. Tokyo, Japan, pp 177–185

  29. Montgomery J, Candia G, Lemnitzer A, Martinez A (2020) The September 19, 2017 Mw 7.1 Puebla-Mexico city earthquake: observed rockfall and landslide activity. Soil Dyn Earthq Eng 130:105972. https://doi.org/10.1016/j.soildyn.2019.105972

    Article  Google Scholar 

  30. Morales-Esteban A, de Justo JL, Reyes J, Azañón JM, Durand P, Martínez-Álvarez F (2015) Stability analysis of a slope subject to real accelerograms by finite elements. Application to San Pedro cliff at the Alhambra in Granada. Soil Dyn Earthq Eng 69:28–45. https://doi.org/10.1016/j.soildyn.2014.10.023

    Article  Google Scholar 

  31. Nandi S, Santhoshkumar G, Ghosh P (2021) Determination of critical slope face in c – ϕ soil under seismic condition using method of stress characteristics. Int J Geomech 21(4):04021031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001976

    Article  Google Scholar 

  32. Nian T-K, Jiang J-C, Wang F-W, Yang Q, Luan M-T (2016) Seismic stability analysis of slope reinforced with a row of piles. Soil Dyn Earthq Eng 84:83–93. https://doi.org/10.1016/j.soildyn.2016.01.023

    Article  Google Scholar 

  33. Nimbalkar SS, Choudhury D, Mandal JN (2006) Seismic stability of reinforced-soil wall by pseudo-dynamic method. Geosynth Int 13(3):111–119. https://doi.org/10.1680/gein.2006.13.3.111

    Article  Google Scholar 

  34. Okabe S (1926) General theory of earth pressure. J Jpn Soc Civ Eng 12(6):1277–1323

    Google Scholar 

  35. Pain A, Annapareddy VSR, Nimbalkar S (2018) Seismic active thrust on rigid retaining wall using strain dependent dynamic properties. Int J Geomech 18(12):1–11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001331

    Article  Google Scholar 

  36. Pain A, Choudhury D, Bhattacharyya SK (2016) Seismic uplift capacity of horizontal strip anchors using a modified pseudodynamic approach. Int J Geomech 16(1):04015025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000471

    Article  Google Scholar 

  37. Pain A, Choudhury D, Bhattacharyya SK (2017) Seismic passive earth resistance using modified pseudo-dynamic method. Earthq Eng Eng Vib 16(2):263–274. https://doi.org/10.1007/s11803-017-0381-1

    Article  Google Scholar 

  38. Pain A, Choudhury D, Bhattacharyya SK (2017) Seismic rotational stability of gravity retaining walls by modified pseudo-dynamic method. Soil Dyn Earthq Eng 94:244–253. https://doi.org/10.1016/j.soildyn.2017.01.016

    Article  Google Scholar 

  39. Paul DK, Kumar S (1997) Stability analysis of slope with building loads. Soil Dyn Earthq Eng 16:395–405

    Article  Google Scholar 

  40. Qin C-B, Chian SC (2018) Kinematic analysis of seismic slope stability with a discretisation technique and pseudo-dynamic approach: a new perspective. Géotechnique 68(6):492–503. https://doi.org/10.1680/jgeot.16.P.200

    Article  Google Scholar 

  41. Qin C, Chian SC (2019) Impact of earthquake characteristics on seismic slope stability using modified pseudodynamic method. Int J Geomech 19(9):04019106. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001489

    Article  Google Scholar 

  42. Rajesh BG, Choudhury D (2017) Seismic passive earth resistance in submerged soils using modified pseudo-dynamic method with curved rupture surface. Mar Georesour Geotechnol 35(2):930–938. https://doi.org/10.1080/1064119X.2016.1260077

    Article  Google Scholar 

  43. Ruan X, Sun S (2014) External seismic stability of vertical geosynthetic-reinforced soil walls using pseudo-static method. Acta Geotech 9(6):1085–1095. https://doi.org/10.1007/s11440-013-0241-8

    Article  Google Scholar 

  44. Sahoo PP, Shukla SK (2019) Taylor’s slope stability chart for combined effects of horizontal and vertical seismic coefficients. Géotechnique 69(4):344–354. https://doi.org/10.1680/jgeot.17.P.222

    Article  Google Scholar 

  45. Santhoshkumar G, Ghosh P, Murakami A (2019) Seismic active resistance of a tilted cantilever retaining wall considering adaptive failure mechanism. Int J Geomech 19(8):1–11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001470

    Article  Google Scholar 

  46. Santhoshkumar G, Ghosh P (2020) Seismic stability analysis of a hunchbacked retaining wall under passive state using method of stress characteristics. Acta Geotech. https://doi.org/10.1007/s11440-020-01003-w

    Article  Google Scholar 

  47. Shinoda M, Miyata Y (2019) PSO-based stability analysis of unreinforced and reinforced soil slopes using non-circular slip surface. Acta Geotech 14(3):907–919. https://doi.org/10.1007/s11440-018-0678-x

    Article  Google Scholar 

  48. Sokolovski VV (1960) Statics of soil media, 2nd edn. Butterworths Scientific Publications, London

    Google Scholar 

  49. Steedman RS, Zeng X (1990) The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Géotechnique 40(1):103–112. https://doi.org/10.1680/geot.1990.40.1.103

    Article  Google Scholar 

  50. Wang L, Zhang X, Tinti S (2021) Large deformation dynamic analysis of progressive failure in layered clayey slopes under seismic loading using the particle finite element method. Acta Geotech. https://doi.org/10.1007/s11440-021-01142-8

    Article  Google Scholar 

  51. Wang Y, Zhang G, Wang A (2018) Block reinforcement behavior and mechanism of soil slopes. Acta Geotech 13(5):1155–1170. https://doi.org/10.1007/s11440-018-0644-7

    Article  MathSciNet  Google Scholar 

  52. Xu X, Zhou X, Huang X, Xu L (2017) Wedge-failure analysis of the seismic slope using the pseudodynamic method. Int J Geomech 17(12):04017108. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001015

    Article  Google Scholar 

  53. Zeng X, Steedman RS (1993) On the behaviour of quay walls in earthquakes. Géotechnique 43(3):417–431. https://doi.org/10.1680/geot.1993.43.3.417

    Article  Google Scholar 

  54. Zhou X, Cheng H, Wong LNY (2019) Three-dimensional stability analysis of seismically induced landslides using the displacement-based rigorous limit equilibrium method. Bull Eng Geol Environ 78:4743–4756. https://doi.org/10.1007/s10064-018-01444-4

    Article  Google Scholar 

  55. Zhou J, Qin C (2020) Finite-element upper-bound analysis of seismic slope stability considering pseudo-dynamic approach. Comput Geotech 122:103530. https://doi.org/10.1016/j.compgeo.2020.103530

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S., Santhoshkumar, G. & Ghosh, P. Development of limiting soil slope profile under seismic condition using slip line theory. Acta Geotech. 16, 3517–3531 (2021). https://doi.org/10.1007/s11440-021-01251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01251-4

Keywords

Navigation