Skip to main content
Log in

Hierarchical multiscale numerical modelling of internal erosion with discrete and finite elements

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents a coupled finite and discrete-element model (FEM and DEM) to simulate internal erosion. The model is based on ICY, an interface between COMSOL, an FEM engine, and YADE, a DEM code. With this model, smaller DEM subdomains are generated to simulate particle displacements at the grain scale. Particles in these small subdomains are subjected to buoyancy, gravity, drag and contact forces for short time steps (0.1 s). The DEM subdomains provide the macroscale (continuum) model with a particle flux distribution. Through a mass conservation equation, the flux distribution allows changes in porosity, hydraulic conductivity and hydraulic gradient to be evaluated for the same time steps at a larger, continuum scale. The updated hydraulic gradients from the continuum model provide the DEM subdomains with updated hydrodynamic forces based on a coarse-grid method. The number of particles in the DEM subdomains is also updated based on the new porosity distribution. The hierarchical multiscale model (HMM) was validated with the simulation of suffusion. Results for the proposed HMM algorithm are consistent with results based on a DEM model incorporating the full sample and simulation duration. The proposed HMM algorithm could enable the modelling of internal erosion for soil volumes that are too large to be modelled with a single DEM subdomain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andrade JE, Avila C, Hall S, Lenoir N, Viggiani G (2011) Multiscale modeling and characterization of granular matter: from grain kinematics to continuum mechanics. J Mech Phys Solids 59(2):237–250

    Article  MATH  Google Scholar 

  2. Chapuis RP, Aubertin M (2003) On the use of the Kozeny Carman equation to predict the hydraulic conductivity of soils. Can Geotech J 40(3):616–628

    Article  Google Scholar 

  3. Chareyre B, Cortis A, Catalano E, Barthélemy E (2012) Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transp Porous Media 94(2):595–615

    Article  MathSciNet  Google Scholar 

  4. Cheng K, Wang Y, Yang Q (2018) A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Comput Geotechnol 100:30–51

    Article  Google Scholar 

  5. COMSOL (2016) COMSOL MULTIPHYSICS. Version 5.3a. http://www.comsol.com/

  6. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  7. Foster M, Fell R, Spannagle M (2000) The statistics of embankment dam failures and accidents. Can Geotech J 37(5):1000–1024

    Article  Google Scholar 

  8. Galindo-Torres S (2013) A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid–solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265:107–119

    Article  MathSciNet  MATH  Google Scholar 

  9. Galindo-Torres S, Scheuermann A, Mühlhaus H, Williams D (2015) A micro-mechanical approach for the study of contact erosion. Acta Geotech 10(3):357–368

    Article  Google Scholar 

  10. Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo N, Zhao J (2014) A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng 99(11):789–818

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo N, Zhao J (2016) Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils. Comput Methods Appl Mech Eng 305:37–61

    Article  MathSciNet  MATH  Google Scholar 

  13. ICOLD (2017) Internal erosion of existing dams, levees and dikes, and their foundations. ICOLD Bulletin 164, vol 1

  14. Itasca PD (2004) PFC3D (particle flow code in 3 dimensions) manual. Minneapolis, Minnesota

  15. Kozicki J, Donzé F (2009) Yade-open dem: an open-source software using a discrete element method to simulate granular material. Eng Comput 26(7):786–805

    MATH  Google Scholar 

  16. Lominé F, Scholtès L, Sibille L, Poullain P (2013) Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: application to piping erosion. Int J Numer Anal Methods Geomech 37(6):577–596

    Article  Google Scholar 

  17. O’Sullivan C (2014) Particulate discrete element modelling: a geomechanics perspective. CRC Press, London

    Google Scholar 

  18. Pirnia P, Duhaime F, Éthier Y, Dubé J-S (2016) Development of a multiscale numerical modelling tool for granular materials. In: Paper presented at the 69th Canadian geotechnical conference, Vancouver, BC

  19. Pirnia P, Duhaime F, Ethier Y, Dubé J-S (2019) ICY: an interface between comsol multiphysics and discrete element code yade for the modelling of porous media. Comput Geosci 123:38–46

    Article  Google Scholar 

  20. Pirnia P, Duhaime F, Ethier Y, Dubé J-S (2019) Drag force calculations in polydisperse DEM simulations with the coarse-grid method: influence of the weighting method and improved predictions through artificial neural. Transp Porous Media 129(3):837–853

    Article  MathSciNet  Google Scholar 

  21. Sakthivadivel R (1966) Theory and mechanism of filtration of non-colloidal fines through a porous medium. University of California, Berkeley

    Google Scholar 

  22. Shire T, O’Sullivan C, Hanley K, Fannin R (2014) Fabric and effective stress distribution in internally unstable soils. Journal of geotechnical and geoenvironmental engineering 140(12):04014072

    Article  Google Scholar 

  23. Šmilauer V, Catalano E, Chareyre B, Dorofeenko S, Duriez J, Gladky A, Kozicki J, Modenese C, Scholtès L, Sibille L (2015), Reference manual. In: Yade documentation 2nd ed. The Yade Project. DOI: 10.5281/zenodo.34045

  24. Steeb H, Diebels S, Vardoulakis I (2005) A multiphase continuum-based model capturing erosion and deposition. Trends Appl Math Mech 32:519–528

    MATH  Google Scholar 

  25. Steeb H, Diebels S, Vardoulakis I (2007) Modeling internal erosion in porous media. In: Paper presented at Geo-Denver 2007, new peaks in geotechnics, Denver, Colorado

  26. Tomlinson SS, Vaid Y (2000) Seepage forces and confining pressure effects on piping erosion. Can Geotech J 37(1):1–13

    Article  Google Scholar 

  27. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77(1):79–87

    Article  Google Scholar 

  28. Vardoulakis I, Stavropoulou M, Papanastasiou P (1996) Hydro-mechanical aspects of the sand production problem. Transp Porous Media 22(2):225–244

    Article  Google Scholar 

  29. Vardoulakis I, Papanastasiou P, Stavropoulou M (2001) Sand erosion in axial flow conditions. Transp Porous Media 45(2):267–280

    Article  Google Scholar 

  30. Wan CF, Fell R (2002) Investigation of internal erosion and piping of soils in embankment dams by the soil slot erosion test and the hole erosion test. University of New South Wales, School of Civil and Environmental Engineering, Sydney

    Google Scholar 

  31. Wan CF, Fell R (2004) Investigation of rate of erosion of soils in embankment dams. J Geotech Geoenviron Eng 130(4):373–380

    Article  Google Scholar 

  32. Wang K, Sun W (2016) A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain. Comput Methods Appl Mech Eng 304:546–583

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang M, Feng Y, Pande G, Zhao T (2018) A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials. Int J Numer Anal Methods Geomech 42(12):1405–1424

    Article  Google Scholar 

  34. Wautier A, Bonelli S, Nicot F (2019) DEM investigations of internal erosion: grain transport in the light of micromechanics. Int J Numer Anal Methods Geomech 43(1):339–352

    Article  Google Scholar 

  35. Yang J, Yin ZY, Laouafa F, Hicher PY (2019) Modeling coupled erosion and filtration of fine particles in granular media. Acta Geotech 12(6):1615–1627. https://doi.org/10.1007/s11440-019-00808-8

    Article  Google Scholar 

  36. Yang J, Yin ZY, Laouafa F, Hicher PY (2019) Analysis of suffusion in cohesionless soils with randomly distributed porosity and fines content. Comput Geotech 111:157–171

    Article  Google Scholar 

  37. Zeghal M, El Shamy U (2004) A continuum-discrete hydromechanical analysis of granular deposit liquefaction. Int J Numer Anal Methods Geomech 28(14):1361–1383

    Article  MATH  Google Scholar 

  38. Zhang D-M, Gao C-P, Yin Z-Y (2019) CFD-DEM modeling of seepage erosion around shield tunnels. Tunn Undergr Space Technol 83:60–72

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Hydro-Québec and NSERC for this project and the helpful comments of two reviewers.

Author information

Authors and Affiliations

Authors

Contributions

Pouyan Pirnia developed the theory and programmed the examples. He wrote the paper. François Duhaime had the original idea of modelling internal erosion with a multiscale model. He supervised the programming of the interface and the examples. He also revised and improved the manuscript. Yannic Ethier supervised the project and edited the manuscript. Jean-Sébastien Dubé supervised the project and edited the manuscript.

Corresponding author

Correspondence to Pouyan Pirnia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirnia, P., Duhaime, F., Ethier, Y. et al. Hierarchical multiscale numerical modelling of internal erosion with discrete and finite elements. Acta Geotech. 15, 2877–2889 (2020). https://doi.org/10.1007/s11440-020-01009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01009-4

Keywords

Navigation