Skip to main content
Log in

FE-based identification of pile–soil interactions from dynamic load tests to predict the axial bearing capacity

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The static axial pile bearing capacity depends mainly on the developed pile–soil interaction. Hence, to determine a realistic and reliable ultimate pile bearing capacity, the pile–soil interaction needs to be identified and described precisely. One relevant field for this application is dynamic load tests (DLTs). During a DLT, the pile bearing capacity is deduced from measurements at the pile head. Current procedures of deriving the bearing capacity of open-ended piles from these measurements are lagging behind regarding the description of the pile–soil interaction for open-ended piles and the influence of the pore fluid response. Hence, a new technique based on the finite element method is developed, which captures the key aspects for DLT results correctly and is capable of deriving the static pile bearing capacity. The method is validated against dynamic and static load test data obtained from centrifuge tests on large diameter monopiles. An application to field test data of tubular steel piles is shown. The developed approach seems suitable to assess the static pile bearing capacity based on DLT measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abu-Farsakh MY, Haque MN, Tsai C (2017) A full-scale field study for performance evaluation of axially loaded large-diameter cylinder piles with pipe piles and PSC piles. Acta Geotech 12(4):753–772

    Google Scholar 

  2. Bruno D, Randolph MF (1999) Dynamic and static load testing of model piles driven into dense sand. J Geotech Geoenviron Eng 125(11):988–998

    Article  Google Scholar 

  3. De Nicola A, Randolph MF (1994) Development of a miniature pile driving actuator. In: Leung CF, Lee FH, Tan TS (eds) Proceedings of international conference on centrifuge modelling 1994, pp 473–478

  4. EA-Pfähle (2012) Empfehlungen des Arbeitskreises “Pfähle”–EA-Pfähle der Deutschen Geschellschaft für Geotechnik (DGGT), 2nd edn. Ernst & Sohn, Berlin

    Google Scholar 

  5. Grabe J, Heins E (2017) Coupled deformation–seepage analysis of dynamic capacity tests on open-ended piles in saturated sand. Acta Geotech 12(1):211–223

    Article  Google Scholar 

  6. Hamann T, Grabe J (2013) A simple dynamic approach for the numerical modeling of soil as a two-phase material. Geotechnik 36(3):279–299

    Article  Google Scholar 

  7. Heins E (2018) Numerical based identification of the pile–soil interaction in terms of the axial pile bearing capacity. Ph.D. thesis, Veröffentlichungen des Instituts für Geotechnik und Baubetrieb der Technischen Universität Hamburg-Harburg, Heft 44, Hamburg, Germany

  8. Heins E, Bienen B, Randolph MF, Grabe J (2018) Effect of installation method on static and dynamic load test response for piles in sand. Int J Phys Model Geotech 18:1–23 Ahead of print

    Google Scholar 

  9. Karabeliov K, Cuellar P, Baeßler M (2017) Großmaßstäbliche zyklische Versuche zum Zugtragverhalten von gerammten Stahlrohrpfählen. In: Dietzel M, Kieffer S, Marte R, Schubert W, Schweiger HF (eds) Beiträge zum 32. Christan Veder Kolloquium—Zugelemente in der Geotechnik, Veröffentlichungen der Gruppe Geotechnik Graz der Technischen Universität Graz, Heft 56, pp 103–120

  10. Kinzler S (2011) Zur Parameteridentifikation, Entwurfs- und Strukturoptimierung in der Geotechnik mittels numerischer Verfahren. Ph.D. thesis, Veröffentlichungen des Instituts für Geotechnik und Baubetrieb der Technischen Universität Hamburg-Harburg, Heft 23, Hamburg, Germany

  11. Kolymbas D (1991) Longitudinal impacts on piles. Soil Dyn Earthq Eng 10(5):264–270

    Article  Google Scholar 

  12. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohes Frict Mater 2(4):279–299

    Article  Google Scholar 

  13. Paikowsky S, Chernauskaus LR (2008) Dynamic analysis of open ended pipe piles. In: Santos JA (ed) Proceedings of 8th international conference on the application of stress wave theory to piles in Lisbon, Portugal, IOS Press, pp 59–76

  14. Randolph MF (2003) Science and empiricism in pile foundation design. Géotechnique 53(10):847–875

    Article  Google Scholar 

  15. Randolph MF, Deeks AJ (1992) Dynamic and static soil models for axial pile response. In: Barends FBJ (ed) Application of stress-wave theory to piles. Millpress, Rotterdam, pp 3–14

    Google Scholar 

  16. Rausche F, Likins G, Liang L, Hussein M (2010) Static and dynamic models for CAPWAP signal matching. In: Hussein MH, Anderson JB, Camp WM (eds) Art of foundation engineering practice, pp 534–553

  17. Rücker W, Karabeliov K, Cuellar P, Baeßler M, Georgi S (2013) Großversuche an Rammpfählen zur Ermittlung der Tragfähigkeit unter zyklischer Belastung und Standzeit. Geotechnik 36(2):77–89

    Article  Google Scholar 

  18. Stahlmann J, Kirsch F, Schallert M, Klingmüller O, Elmer KH (2004) Pfahltests—modern dynamisch und/oder konservativ statisch. In: Tagungsband zum 4. Kolloquium “Bauen in Boden und Fels” der Technischen Akademie Esslingen, pp 23–40

  19. von Wolffersdorff PA (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohes Frict Mater 1(3):251–271

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Federal Institute for Material Research and Testing (BAM) for providing the field test data (investigated in connection with research grant FKZ 0325227 of the German Federal Ministry for Economic Affairs and Energy) and enabling the application of the newly developed FE approach to real measured field test data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Grabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heins, E., Grabe, J. FE-based identification of pile–soil interactions from dynamic load tests to predict the axial bearing capacity. Acta Geotech. 14, 1821–1841 (2019). https://doi.org/10.1007/s11440-019-00804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00804-y

Keywords

Navigation