Skip to main content
Log in

A critical state constitutive model for clean and silty sand

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The mechanical behavior of silty sand is highly dependent on the percentage of fines in addition to the packing density and confining pressure. Properly modeling the diverse behavior of silty sand remains an area of difficulty and uncertainty. This paper presents an attempt to formulate a critical state-based constitutive model for sand with varying fines content based on several new laboratory findings. A marked feature of the model is a unified description of the state-dependent elastic modulus as well as a unified description of plastic hardening modulus such that only one set of elastic and hardening parameters is required for sand with different fines contents. The model is calibrated and validated using the results from a structured experimental program. It shows that the model can produce reasonably good predictions for undrained shear responses of sand specimens under a range of void ratios, confining stresses and fines contents. In particular, it successfully predicts the laboratory observation that under otherwise similar conditions, the presence of non-plastic fines increases the liquefaction susceptibility of sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A e :

Fitting parameter of G using F(e)

a e :

Fitting parameter of G in F(e)

A ψ :

Fitting parameter of G using F(ψ)

a ψ :

Fitting parameter of G in F(ψ)

C 0 :

Model parameter in Cr

C r :

Reduction factor for elastic shear modulus

D :

Dilatancy

d 0 :

Dilatancy parameter

dε q :

Deviatoric strain increment

dε eq :

Elastic deviatoric strain increment

dε pq :

Plastic deviatoric strain increment

dε v :

Volumetric strain increment

dε ev :

Elastic volumetric strain increment

dε pv :

Plastic volumetric strain increment

e :

Void ratio

e 0 :

Initial void ratio prior to shearing (i.e., post-consolidation void ratio ec)

e Γ :

Intercept of critical state line (CSL) in the e − (p′/Pa)ξ plane

F(e):

Void ratio function

f(X 1, X 2, X 3…):

Function of X1, X2, X3

F(ψ):

State parameter function

FC:

Fines content (%)

f c :

Fines content in decimal

G :

Elastic shear modulus

h, h 1, h 2 :

Hardening parameters

K :

Elastic bulk modulus

k :

Pressure exponent of modulus

k 1 :

Model parameter in Cr

K p :

Plastic hardening modulus

L :

Loading index

m :

Dilatancy parameter

M :

Stress ratio (η) at critical state

n :

Hardening parameter

p′ :

Mean effective stress

p c :

Post-consolidation pressure (i.e., initial mean effective stress)

P a :

Reference stress equaling to 1 atm

PSD:

Particle size distribution

PTS:

Phase transformation state

q :

Deviatoric stress

R :

Roundness of sand particle

R comb :

Combined roundness

UIS:

Undrained instability state

α :

Model parameter in Kp

ε q :

Deviatoric strain

ε eq :

Elastic deviatoric strain

ε pq :

Plastic deviatoric strain

ε v :

Volumetric strain

ε ev :

Elastic volumetric strain

ε pv :

Plastic volumetric strain

ζ :

Accumulated plastic deviatoric strain

η :

Stress ratio q/p′

η peak :

Stress ratio (η) at peak state

η PTS :

Stress ratio (η) at phase transformation state

λ c :

Magnitude of the slope of CSL

ν :

Poisson’s ratio

ξ :

Pressure exponent of CSL formulation

φ cs :

Critical state friction angle

ψ :

State parameter

ψ 0 :

Initial state parameter prior to shearing

References

  1. Been K, Jefferies MG (1985) A state parameter for sands. Geotechnique 35(2):99–112

    Google Scholar 

  2. Borja RI, Andrade JE (2006) Critical state plasticity. Part VI: meso-scale finite element simulation of strain localization in discrete granular materials. Comput Methods Appl Mech Eng 195(37):5115–5140

    MATH  Google Scholar 

  3. Fuentes W, Triantafyllidis T, Lizcano A (2012) Hypoplastic model for sands with loading surface. Acta Geotech 7(3):177–192

    Google Scholar 

  4. Gu X, Yang J, Huang M (2013) Laboratory measurements of small strain properties of dry sands by bender element. Soils Founds 53(5):735–745

    Google Scholar 

  5. Guo P, Su X (2007) Shear strength, interparticle locking, and dilatancy of granular materials. Can Geotech J 44(5):579–591

    Google Scholar 

  6. Huang YT, Huang AB, Kuo YC, Tsai MD (2004) A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dyn Earthq Eng 24(9–10):733–743

    Google Scholar 

  7. Iwasaki T, Tatsuoka F (1977) Effect of grain size and grading on dynamic shear moduli of sand. Soils Founds 17(3):19–35

    Google Scholar 

  8. Jefferies MG (1993) Nor-Sand: a simple critical state model for sand. Geotechnique 43(1):91–103

    Google Scholar 

  9. Jefferies MG, Been K (2006) Soil liquefaction: a critical state approach. Taylor & Francis, London

    Google Scholar 

  10. Lade PV, Yamamuro JA (1997) Effects of nonplastic fines on static liquefaction of sands. Can Geotech J 34(6):918–928

    Google Scholar 

  11. Li XS (2002) A sand model with state-dependent dilatancy. Geotechnique 52(3):173–186

    Google Scholar 

  12. Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Geotechnique 50(4):449–460

    Google Scholar 

  13. Li XS, Dafalias YF (2012) Anisotropic critical state theory: role of fabric. J Eng Mech 138(3):263–275

    Google Scholar 

  14. Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenviron Eng 124(12):1215–1217

    Google Scholar 

  15. Liang LB (2016) Static liquefaction of sand-fines mixtures with the presence of initial shear stress, M.Phil. Thesis, The University of Hong Kong

  16. Ling HI, Yang S (2006) Unified sand model based on the critical state and generalized plasticity. J Eng Mech 132(12):1380–1391

    Google Scholar 

  17. Manzari MT, Dafalias YF (1997) A critical state two-surface plasticity model for sands. Geotechnique 47(2):255–272

    Google Scholar 

  18. Murthy T, Loukidis D, Carraro J, Prezzi M, Salgado R (2007) Undrained monotonic response of clean and silty sands. Geotechnique 57(3):273–288

    Google Scholar 

  19. Ni Q, Tan TS, Dasari GR, Hight DW (2004) Contribution of fines to the compressive strength of mixed soils. Geotechnique 54(9):561–569

    Google Scholar 

  20. Papadimitriou AG, Bouckovalas GD, Dafalias YF (2001) Plasticity model for sand under small and large cyclic strains. J Geotech Geoenviron Eng 127(11):973–983

    Google Scholar 

  21. Pitman TD, Robertson PK, Sego DC (1994) Influence of fines on the collapse of loose sands. Can Geotech J 31(5):728–739

    Google Scholar 

  22. Potts DM, Zdravković L (2001) Finite element analysis in geotechnical engineering: theory. Thomas Telford, London

    Google Scholar 

  23. Rahman MM, Lo SCR, Dafalias YF (2014) Modelling the static liquefaction of sand with low-plasticity fines. Geotechnique 64(11):881–894

    Google Scholar 

  24. Simoni A, Houlsby GT (2006) The direct shear strength and dilatancy of sand–gravel mixtures. Geotech Geol Eng 24(3):523–549

    Google Scholar 

  25. Stamatopoulos CA, Lopez-Caballero F, Modaressi-Farahmand-Razavi A (2015) The effect of preloading on the liquefaction cyclic strength of mixtures of sand and silt. Soil Dyn Earthq Eng 78:189–200

    Google Scholar 

  26. Sze HY (2010) Initial shear and confining stress effects on cyclic behaviour and liquefaction resistance of sands, Ph.D. thesis. The University of Hong Kong

  27. Sze H, Yang J (2014) Failure modes of sand in undrained cyclic loading: impact of sample preparation. J Geotech Geoenviron Eng 140(1):152–169

    Google Scholar 

  28. Taiebat M, Dafalias YF (2008) SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 32(8):915–948

    MATH  Google Scholar 

  29. Thevanayagam S, Shenthan T, Mohan S, Liang J (2002) Undrained fragility of clean sands, silty sands, and sandy silts. J Geotech Geoenviron Eng 128(10):849–859

    Google Scholar 

  30. Wang G, Xie Y (2014) Modified bounding surface hypoplasticity model for sands under cyclic loading. J Eng Mech 140(1):91–101

    Google Scholar 

  31. Wei LM (2012) Static liquefaction and flow failure of sandy soils, Ph.D. thesis. The University of Hong Kong

  32. Wichtmann T, Triantafylidis T (2009) Influence of the grain-size distribution curve of quartz sand on the small-strain shear modulus Gmax. J Geotech Geoenviron Eng ASCE 135(10):1404–1418

    Google Scholar 

  33. Wichtmann T, Hernandez M, Triantafylidis T (2015) On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand. Soil Dyn Earthq Eng 69:103–114

    Google Scholar 

  34. Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  35. Xiao Y, Liu H, Chen Y, Chu J (2014) Strength and dilatancy of silty sand. J Geotech Geoenviron Eng 140(7):06014007

    Google Scholar 

  36. Yang J (2002) Non-uniqueness of flow liquefaction line for loose sand. Geotechnique 52(10):757–760

    Google Scholar 

  37. Yang J, Li X (2004) State-dependent strength of sands from the perspective of unified modeling. J Geotech Geoenviron Eng 130(2):186–198

    Google Scholar 

  38. Yang J, Liu X (2016) Shear wave velocity and stiffness of sand: the role of non-plastic fines. Geotechnique 66(6):500–514

    Google Scholar 

  39. Yang J, Luo XD (2015) Exploring the relationship between critical state and particle shape for granular materials. J Mech Phys Solids 84:196–213

    Google Scholar 

  40. Yang J, Sze HY (2011) Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions. Geotechnique 61(1):59–73

    Google Scholar 

  41. Yang J, Wei LM (2012) Collapse of loose sand with the addition of fines: the role of particle shape. Geotechnique 62(12):1111–1125

    Google Scholar 

  42. Yang J, Wei LM, Dai BB (2015) State variables for silty sands: global void ratio or skeleton void ratio? Soils Founds 55(1):99–111

    Google Scholar 

  43. Yang Z, Li X, Yang J (2008) Quantifying and modelling fabric anisotropy of granular soils. Geotechnique 58(4):237–248

    Google Scholar 

  44. Zhang JM, Wang G (2012) Large post-liquefaction deformation of sand, part I: physical mechanism, constitutive description and numerical algorithm. Acta Geotech 7(2):69–113

    Google Scholar 

  45. Zhao J, Gao Z (2016) Unified anisotropic elastoplastic model for sand. J Eng Mech 142(1):04015056

    Google Scholar 

  46. Zlatović S, Ishihara K (1995) On the influence of nonplastic fines on residual strength. In: Proceedings of the 1st international conference earthquake geotechnical engineering, Tokyo, pp 239–24

Download references

Acknowledgements

This work was supported by the Research Grants Council of Hong Kong through the General Research Fund (17250316, 17205717). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Yang, J. A critical state constitutive model for clean and silty sand. Acta Geotech. 14, 329–345 (2019). https://doi.org/10.1007/s11440-018-0675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0675-0

Keywords

Navigation