Skip to main content
Log in

Three-dimensional numerical and analytical study of horizontal group of square anchor plates in sand

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In this paper, numerical and analytical methods are used to evaluate the ultimate pullout capacity of a group of square anchor plates in row or square configurations, installed horizontally in dense sand. The elasto-plastic numerical study of square anchor plates is carried out using three-dimensional finite element analysis. The soil is modeled by an elasto-plastic model with a Mohr–Coulomb yield criterion. An analytical method based on a simplified three-dimensional failure mechanism is developed in this study. The interference effect is evaluated by group efficiency η, defined as the ratio of the ultimate pullout capacity of group of N anchor plates to that of a single isolated plate multiplied by number of plates. The variation of the group efficiency η was computed with respect to change in the spacing between plates. Results of the analyses show that the spacing between the plates, the internal friction angle of soil and the installation depth are the most important parameters influencing the group efficiency. New equations are developed in this study to evaluate the group efficiency of square anchor plates embedded horizontally in sand at shallow depth (H = 4B). The results obtained by numerical and analytical solutions are in excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abbad H, Meghachou M, Dekar C, Daoud SM (2013) Interaction of rupture zones of adjacent anchor plates in an analogical medium. ETASR Eng Technol Appl Sci Res 3(6):562–565

    Google Scholar 

  2. Ardebili ZA, Gabr MA, Rahman MS (2016) Uplift capacity of plate anchors in saturated clays: analyses with different constitutive models. Int J Geomech 16(2):4015053

    Article  Google Scholar 

  3. Bhattacharya P, Kumar J (2014) Vertical pullout capacity of horizontal anchor plates in the presence of seismic and seepage forces. Geomech Geoeng 9(4):294–302

    Article  Google Scholar 

  4. Bolton MD (1986) The strength and dilatancy of sands. Géotechnique 36(1):65–78

    Article  Google Scholar 

  5. Brinkgreve RBJ, Vermeer PA (2001) Plaxis finite element code for soil and rock analyses, Version 1, BALKEMA

  6. Clemence SP, Veesaert CJ (1977) Dynamic pullout resistance of anchors in sand. In: Proceedings of the international symposium on soil-structure interaction, Roorkee, pp 389–397

  7. Das MB, Yang Jin-Kaun (1987), Uplift capacity of model group anchors in sand. Foundations for transmission line towers, Geotechnical Special Publication No. 8, ASCE

  8. Das BM (1978) Model tests for uplift capacity of foundations in clay. Soils Found 18(2):17–24

    Article  Google Scholar 

  9. Das BM (1983) A procedure for estimation of uplift capacity of rough piles. Soils and Found 23(3):122–126

    Article  MathSciNet  Google Scholar 

  10. Das BM (1990) Earth anchors. Dev Geotech Eng 50:1–241

    Google Scholar 

  11. Emirler B, Bildik S, Laman M (2015) Numerical investigation of group anchors. IFCEE 2015 © ASCE 279–288

  12. Ganesh R, Sahoo JP (2015) Influence of ground water on the ultimate uplift resistance of circular plate anchors. In: 50th Indian geotechnical conference 17th–19th December 2015, Pune, Maharashtra, India

  13. Geddes JD, Murray EJ (1996) Plate anchor groups pulled vertically in sand. J Geotech Eng ASCE 122(7):509–516

    Article  Google Scholar 

  14. Ghosh P, Kumari R (2012) Seismic interference of two nearby horizontal strip anchors in layered soil. Nat Hazards 63:789–804

    Article  Google Scholar 

  15. Hanna A, Ayadat T, Sabry M (2007) Pullout resistance of single vertical shallow helical and plate anchors in sand. Geotech Geol Eng 25(5):559–573

    Article  Google Scholar 

  16. Hanna A, Rahman F, Ayadat T (2011) Passive earth pressure on embedded vertical plate anchors in sand. Acta Geotechnica 6(1):21–29

    Article  Google Scholar 

  17. Ilamparuthi K, Dickin EA, Muthukrisnaiah K (2002) Experimental investigation of the uplift behaviour of circular plate anchors embedded in sand. Can Geotech J 39:648–664

    Article  Google Scholar 

  18. Khatri VN, Kumar J (2009) Vertical uplift resistance of circular plate anchors in clays under undrained condition. Comput Geotech 36(8):1352–1359

    Article  Google Scholar 

  19. Khatri VN, Kumar J (2010) Stability of an unsupported vertical circular excavation in clays under undrained condition. Comput Geotech 37(3):419–424

    Article  Google Scholar 

  20. Khatri VN, Kumar J (2011) Effect of anchor width on pullout capacity of strip anchors in sand. Can Geotech J 48(3):511–517

    Article  Google Scholar 

  21. Kouzer KM, Kumar J (2009) Vertical uplift capacity of two interfering horizontal anchors in sand using an upper bound limit analysis. Comput Geotech 36(6):1084–1089

    Article  Google Scholar 

  22. Kouzer KM, Kumar J (2009) Vertical uplift capacity of equally spaced horizontal strip anchors in sand. Int J Geomech 9(5):230–236

    Article  Google Scholar 

  23. Kumar J, Kouzer KM (2008) Vertical uplift capacity of a group of shallow horizontal anchors in sand. Géotechnique 58(10):821–823

    Article  Google Scholar 

  24. Kumar J, Naskar T (2012) Vertical uplift capacity of a group of two coaxial anchors in a general c–φ soil. Can Geotech J 49(3):367–373

    Article  Google Scholar 

  25. Mabrouki A, Mellas M (2014) Étude tridimensionnelle de la capacité ultime des plaques d’ancrage dans un sol frottant. Courrier Du Savoir 18:15–19

    Google Scholar 

  26. Merifield RS, Sloan SW (2006) The ultimate pullout capacity of anchors in frictional soils. Can Geotech J 43(8):852–868

    Article  Google Scholar 

  27. Merifield R S, Lyamin A V, Sloan S W (2006) Three dimensional lower bound solutions for the stability of plate anchors in sand. Géotechnique 56(2):123–132

    Article  Google Scholar 

  28. Merifield RS, Smith CC (2010) The ultimate uplift capacity of multi-plate strip anchors in undrained clay. Comput Geotech 37:504–514

    Article  Google Scholar 

  29. Meyerhof GG, Adams JI (1968) The ultimate uplift capacity of foundations. Can Geotech J 5(4):225–244

    Article  Google Scholar 

  30. Meyerhof GG (1973) Uplift resistance of inclined anchors and piles. In: Proceedings of VIII international conference on soil mechanics and foundation engineering, Moscow, USSR, 2, 1, 167–172

  31. Mors H (1959) The behaviour of mast foundations subject to tensile forces. Bautechnik 10:367–378

    Google Scholar 

  32. Murray EJ, Geddes JD (1987) Uplift of anchor plates in sand. J Geotech Eng 113(3):202–215

    Article  Google Scholar 

  33. Rowe RK, Davis EH (1982) The behaviour of anchor plates in sand. Géotechnique 32(1):25–41

    Article  Google Scholar 

  34. Sahoo JP, Kumar J (2014) Vertical uplift resistance of two closely spaced horizontal strip anchors embedded in cohesive—frictional weightless medium. Can Geotech J 51:223–230

    Article  MathSciNet  Google Scholar 

  35. Sahoo JP, Kumar J (2014) Vertical uplift resistance of two interfering horizontal anchors in clay. J Geotech Geoenviron Eng 140(4):06013007

    Article  Google Scholar 

  36. Wang D, Merifield RS, Gaudin C (2013) Uplift behaviour of helical anchors in clay. Can Geotech J 50:575–584

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Mokhbi.

Appendices

Appendix 1: Analytical solution of break-out factor \( \varvec{N}_{{\boldsymbol{\gamma} \,{\textbf{isolated}}}} \) for an isolated square anchor plate

Volumes of the portions 1, 2 and 3 shown in Fig. 25:

Fig. 25
figure 25

Failure mechanism for isolated square plate

$$ V_{1} = B^{2} H $$
(21)
$$ V_{2} = 0.5BH^{2} \tan \theta $$
(22)
$$ V_{3} = \frac{1}{6}H^{3} \tan^{2} \theta $$
(23)

The ultimate pullout load \( Q_{u} \) is equal to the weight of the soil located within the failure mechanism:

$$ Q_{u} = \gamma \left( {V_{1} + 4V_{2} + 4V_{3} } \right) $$
(24)

Using Eqs. 21, 22 and 23, we finally get

$$ Q_{u} = B^{2} \gamma H + 2\gamma H^{2} B\tan \theta + \frac{2}{3}\gamma H^{3} \tan^{2} \theta $$
(25)

By definition, the ultimate pullout capacity \( q_{u} \):

$$ q_{u} = \frac{{Q_{u} }}{A} = \frac{{Q_{u} }}{{B^{2} }} $$
(26)
$$ q_{u} = \gamma H\left( {1 + 2\frac{H}{B}\tan \theta + \frac{2}{3}\left( {\frac{H}{B}} \right)^{2} \tan^{2} \theta } \right) $$
(27)

By convention, \( q_{u} \) is also given by:

$$ q_{u} = \gamma HN_{\gamma } $$
(28)

So that the break-out factor \( N_{\gamma } \) for an isolated square plate anchor is:

$$ N_{{\gamma \,{\text{isolated}}}} = 1 + 2\frac{H}{B}\tan \theta + \frac{2}{3}\left( {\frac{H}{B}} \right)^{2} \tan^{2} \theta $$
(29)

Appendix 2: Analytical solution of break-out factor \( \varvec{N}_{{\boldsymbol{\gamma} \,{\textbf{end}}}} \) for a square anchor plate located at an end

For two or n square anchor plates with \( S < 2H\tan \theta \), the ultimate pullout load of one anchor plate at the end is equal to the weight of the soil located within its failure mechanism defined by points a, b, c, d, e shown in Fig. 21.

Volumes of the portions 4 and 5 shown in Fig. 26:

Fig. 26
figure 26

Interference detail of two failure mechanisms

$$ V_{4} = \frac{1}{2}\left( {2H\tan \theta - S} \right)\left( {H - \frac{S}{2}\cot \theta } \right)B $$
(30)
$$ V_{4} = BH^{2} \tan \theta + B\frac{{S^{2} }}{4}\cot \theta - BSH $$
(31)
$$ V_{5} = \frac{1}{3} \times \frac{1}{2}\left( {\sqrt 2 H\tan \theta - S\frac{\sqrt 2 }{2}} \right)^{2} \left( {H - \frac{S}{2}\cot \theta } \right) $$
(32)
$$ V_{5} = \frac{1}{3}H^{3} \tan^{2} \theta - \frac{1}{2}SH^{2} \tan \theta - \frac{{S^{3} }}{24}\cot \theta + \frac{1}{4}S^{2} H $$
(33)

The volume V corresponding to points a, b, c, d, e shown in Fig. 16 is equal to:

$$ V = V_{\text{T}} - \frac{1}{2}V_{4} - 2\left( {\frac{1}{2}V_{5} } \right) = V_{\text{T}} - \frac{{V_{1} }}{2} - V_{5} $$
(34)

where V T is the total volume of soil located within the failure mechanism for an isolated square anchor plate.

So:

$$ V = B^{2} H + \frac{3}{2}H^{2} B\tan \theta + \frac{1}{3}H^{3} \tan^{2} \theta - \frac{1}{8}BS^{2} \cot \theta + \frac{1}{2}BSH + \frac{1}{2}SH^{2} \tan \theta + \frac{1}{24}S^{3} \cot \theta - \frac{1}{4}S^{2} H $$
(35)

The ultimate pullout capacity of anchor plate located at the end is then:

$$ q_{{u\,{\text{end}}}} = \frac{{Q_{{u\,{\text{end}}}} }}{A} = \frac{{Q_{{u\,{\text{end}}}} }}{{B^{2} }} = \frac{\gamma \times V}{{B^{2} }} $$
(36)

Using Eq. 35, we get

$$ q_{{u\,{\text{end}}}} = \gamma H\left( {1 + \frac{3}{2}\left( {\frac{H}{B}} \right)\tan \theta + \frac{1}{3}\left( {\frac{H}{B}} \right)^{2} \left( {\tan \theta } \right)^{2} - \frac{1}{8}\left( {\frac{S}{B}} \right)\left( {\frac{S}{H}} \right)\cot \theta + \frac{1}{2}\left( {\frac{S}{B}} \right) + \frac{1}{2}\left( {\frac{S}{B}} \right)\left( {\frac{H}{B}} \right)\tan \theta + \frac{1}{24}\left( {\frac{S}{B}} \right)^{2} \left( {\frac{S}{H}} \right)\cot \theta - \frac{1}{4}\left( {\frac{S}{B}} \right)^{2} } \right) $$
(37)

Since

$$ q_{{u\,{\text{end}}}} = \gamma HN_{{\gamma \,{\text{end}}}} $$
(38)

We finally obtained \( N_{{\gamma \,{\text{end}}}} \)

$$ N_{{\gamma \,{\text{end}}}} = 1 + \frac{1}{3}\left( {\frac{H}{B}} \right)^{2} \left( {\tan \theta } \right)^{2} + \frac{1}{2}\left( {3 + \frac{S}{B}} \right)\frac{H}{B}\tan \theta + \frac{1}{8}\frac{S}{H}\frac{S}{B}\left( {\frac{1}{3}\frac{S}{B} - 1} \right)\cot \theta - \frac{1}{4}\left( {\frac{S}{B}} \right)^{2} + \frac{1}{2}\frac{S}{B} $$
(39)

Appendix 3: Analytical solution of break-out factor \( N_{{\gamma \,\text{inter}}} \) for an intermediate square anchor plate

For n square anchor plates in row configuration with \( S < 2H\tan \theta \), the ultimate pullout load of an intermediate anchor plate is equal to the weight of the soil located within its failure mechanism defined by points a, b, c, d, e, f as shown in Fig. 23. The break-out factor corresponding to this volume is noted as \( N_{{\gamma \,{\text{inter}}}} \)

The volume V corresponding to points a, b, c, d, e, f shown in Fig. 18 is equal to:

$$ V = V_{T} - 2\left( {\frac{1}{2}V_{4} } \right) - 4\left( {\frac{1}{2}V_{5} } \right) = V_{T} - V_{4} - 2V_{5} $$
(40)

where V T is the total volume of soil located within the failure mechanism for an isolated square anchor plate.

Using Eqs. (31 and 33), we obtain:

$$ V = B^{2} H + H^{2} B\tan \theta - \frac{1}{4}BS^{2} \cot \theta + BSH - SH^{2} \tan \theta + \frac{1}{12}S^{3} \cot \theta - \frac{1}{2}S^{2} H $$
(41)

The ultimate pullout capacity of one anchor plate located between two anchor plates is given by:

$$ q_{{u\,{\text{inter}}}} = \frac{{Q_{{u\,{\text{inter}}}} }}{A} = \frac{{Q_{{u\,{\text{inter}}}} }}{{B^{2} }} = \frac{\gamma \times V}{{B^{2} }} $$
(42)
$$ q_{{u\,{\text{inter}}}} = \gamma H\left( {1 + \left( {\frac{H}{B}} \right)\tan \theta - \frac{1}{4}\left( {\frac{S}{B}} \right)\left( {\frac{S}{H}} \right)\cot \theta + \frac{S}{B} + \left( {\frac{S}{B}} \right)\left( {\frac{H}{B}} \right)\tan \theta + \frac{1}{12}\left( {\frac{S}{B}} \right)^{2} \left( {\frac{S}{H}} \right)\cot \theta - \frac{1}{2}\left( {\frac{S}{B}} \right)^{2} } \right) $$
(43)

Since

$$ q_{{u\,{\text{inter}}}} = \gamma HN_{{\gamma \,{\text{inter}}}} $$
(44)

We get

$$ N_{{\gamma \,{\text{inter}}}} = 1 + \left( {1 + \frac{S}{B}} \right)\frac{H}{B}\tan \theta - \frac{1}{3}\frac{S}{B}\frac{S}{H}\left( {\frac{1}{4}\frac{S}{B} - 1} \right)\cot \theta - \frac{1}{2}\left( {\frac{S}{B}} \right)^{2} + \frac{S}{B} $$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhbi, H., Mellas, M., Mabrouki, A. et al. Three-dimensional numerical and analytical study of horizontal group of square anchor plates in sand. Acta Geotech. 13, 159–174 (2018). https://doi.org/10.1007/s11440-017-0557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0557-x

Keywords

Navigation