Skip to main content
Log in

An integrative hierarchical monitoring approach applied at a natural analogue site to monitor CO2 degassing areas

  • Review Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper introduces an integrative hierarchical monitoring concept allowing for the detection and assessment of possible leakages from geological storage formations into the shallow subsurface or atmosphere. The concept introduced in this paper combines various investigation methods working at different scales and with varying resolutions. This approach will allow large spatial areas to be consistently covered, to enable efficient monitoring. Experience gained from the adoption of these tools for naturally occurring CO2 deposits (analogue sites) is helpful for the evaluation and adoption of the methods to the requirements of storage projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baldocchi D, Falge E, Gu L et al (2001) A new tool to study the temporal and spatial variability of eco-system scale carbon dioxide, water vapour, and energy flux densities. Am Meteorol Soc 82:2435–2455

    Article  Google Scholar 

  2. Bräuer K, Kämpf H, Koch U, Strauch G (2011) Monthly monitoring of gas and isotope compositions in the free gas phase at degassing locations close to the Nový Kostel focal zone in the western Eger Rift¸ Czech Republic. Chem Geol 290:163–176

    Article  Google Scholar 

  3. Byrdina S, Revil A, Pant SR et al (2009) Dipolar self-potential anomaly associated with carbon dioxide and radon flux at Syabru-Bensi hot springs in central Nepal. J Geophys Res Solid Earth 114:B10101. doi:10.1029/2008JB006154

    Article  Google Scholar 

  4. Geissler WH, Kämpf H, Kind R et al (2005) Seismic structure and location of a CO2 source in the upper mantle of the western Eger (Ohře) Rift, central Europe. Tectonics 24:TC5001

    Article  Google Scholar 

  5. Harig R, Grutter M, Matz G et al. (2007) Remote measurement of emissions by scanning imaging infrared spectrometry. In: CEM2007, 8th international conference on emissions monitoring, Zürich, extended abstracts 34–39

  6. Hoffmann S, Beilecke T, Werban U et al (2008) Joint application of shear wave seismics and direct push methods in the site investigation of an urban aquifer. Grundwasser 13(2):78–90

    Article  Google Scholar 

  7. Kober R, Hornbruch G, Leven C et al (2009) Evaluation of combined direct-push methods used for aquifer model generation. Ground Water 47(4):536–546

    Article  Google Scholar 

  8. Lamert H, Geistlinger H, Werban U et al (2012) Feasibility of geoelectrical monitoring and multiphase modeling for process understanding of gaseous CO2 injection into a shallow aquifer. Environ Earth Sci 2012. doi:10.1007/s12665-012-1669-0

  9. Lessoff SC, Schneidewind U, Leven C, Blum P, Dietrich P, Dagan G (2010) Spatial characterization of the hydraulic conductivity using direct-push injection logging. Water Resour Res 46(12). doi:10.1029/2009WR008949

  10. Leuning R, Etheridge D, Luhar A, Dunse B (2008) Atmospheric monitoring and verification technologies for CO2 geosequestration. Int J Greenh Gas Control 2(3):401–414

    Article  Google Scholar 

  11. Leven C, Weiss H, Vienken V, Dietrich P (2011) Direct Push technologies-an efficient investigation method for subsurface characterization. Grundwasser 16(4):221–234

    Article  Google Scholar 

  12. Lewicki JL, Birkholzer JT, Tsang C-F (2007) Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned. Environ Geol 52(3):457–467

    Google Scholar 

  13. Lewicki JL, Hilley GE, Fischer ML et al (2009) Detection of CO2 leakage by eddy covariance during the ZERT project’s CO2 release experiments. Energy Procedia 1(1):2301–2306

    Article  Google Scholar 

  14. Lewicki JL, Hilley GE, Fischer ML et al (2009) Detection of CO2 leakage by eddy covariance during the ZERT project’s CO2 release experiments. Energy Procedia 1:2301–2306

    Article  Google Scholar 

  15. Miles N, Davis K, Wyngaard J (2005) Detecting leaks from CO2 reservoirs using micrometeorological methods. In: Benson SM (ed) Carbon dioxide capture for storage in deep geologic formations-results from the CO2 capture project. Elsevier Sci London, UK, pp 1031–1044

    Google Scholar 

  16. Oldenburg CM, Lewicki JL and Hepple RP (2003) Near-surface monitoring strategies for geologic carbon dioxide storage verification. Lawrence Berkeley National Laboratory Report No. LBNL-54089, Berkeley, CA, USA

  17. Pearce JM (2006) What can we learn from natural analogues? In: Lombardi S et al. (Eds) Advances in the geological storage of carbon dioxide. NATO Science Series, IV. Earth and Environmental Sciences 65:129–140. Springer, Dordrecht, The Netherlands

  18. Pfanz H, Vodnik D, Wittmann C et al (2007) Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass is affected by elevated carbon dioxide in post-volcanic mofette areas. J Environ Exp Bot 61:41–48

    Article  Google Scholar 

  19. Rein A, Hoffmann R, Dietrich P (2004) Influence of natural time dependent variations of electrical conductivity on DC resistivity measurements. J Hydrol 285(1–4):215–232

    Article  Google Scholar 

  20. Schütze C, Vienken T, Werban U et al (2012) Joint application of geophysical methods and Direct Push-soil gas surveys for the improved delineation of buried fault zones. J Appl Geophys 82:129–136

    Article  Google Scholar 

  21. Schütze C, Sauer U, Beyer K et al (2012b) Natural analogues – a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes. Environ Earth Sci. doi: 10.1007/s12665-012-1701-4

  22. Seto CJ, McRae GJ (2011) Reducing risk in basin scale CO2 sequestration: a framework for integrated monitoring design. Environ Sci Technol 45:845–859

    Article  Google Scholar 

  23. Shuler P and Tang Y (2005) Atmospheric CO2 monitoring systems. In: Benson SM et al. (eds) Carbon dioxide capture for storage in deep geologic formations—results from the CO2 capture project geologic storage of carbon dioxide with monitoring and verification, vol 2, pp 1015–1030

  24. Smeets CJPP, Holzinger R, Vigano I et al (2009) Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos Chem Phys 9:8365–8375

    Google Scholar 

  25. Zschornack L, Leven C (2012) Introduction to direct push technologies. In: M. Kästner et al. (eds) Model-driven soil probing, site assessment and evaluation—guidance on technologies. Rome, La Sapienza Publishing House, University of Rome, Italy

Download references

Acknowledgments

The presented work has been funded by the German Federal Ministry of Education and Research (BMBF) in the frame of the GEOTECHNOLOGIEN Program and the financial support for the projects MONACO (grant ID: 03G0785A) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Sauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, U., Schütze, C., Leven, C. et al. An integrative hierarchical monitoring approach applied at a natural analogue site to monitor CO2 degassing areas. Acta Geotech. 9, 127–133 (2014). https://doi.org/10.1007/s11440-013-0224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-013-0224-9

Keywords

Navigation