Skip to main content
Log in

An innovative device for determining the soil water retention curve under high suction at different temperatures

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

To characterise the water retention behaviour of fine soils, high suction values are applied. In this range of values, the vapour equilibrium technique is usually used. This paper presents an innovative device, a sorption bench that permits the determination of the water retention curve of soil. With this new testing method, the time required for testing is significantly reduced. In addition, this apparatus enables the thermal conditions of a test to be controlled; thus, the applied suction can be better controlled, and the water retention curve for different temperatures can be determined. Another valuable aspect of the device is the adopted technical solution that permits weighing of the samples inside the desiccators at any time. Consequently, the water content kinetics can be defined without disturbing the drying or wetting processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baldi G, Hueckel T, Peano A, Pellegrini R (1991) Developments in modelling of thermo-hydro-geomechanical behaviour of Boom Clay and clay-based buffer materials. ISMES, Final report, EUR 13365, vol 1, p 134

  2. Bernier F, Volckaert G, Alonso E, Villar M (1997) Suction-controlled experiments on Boom Clay. Eng Geol 47:325–338

    Article  Google Scholar 

  3. Blatz JA, Cui Y-J, Oldecop L (2008) Vapour equilibrium and osmotic technique for suction control. Geotech Geol Eng 26(6):661–673

    Article  Google Scholar 

  4. Borel R, Cretinon B (1994) Vérification des hygrometers mesurant l’humidité relative avec des solutions salines saturées. Bull BNM 98

  5. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Colorado State University Hydrology Paper, vol 27, issue no 3

  6. Coll C (2005) Endommagement des roches argileuses et perméabilité induite au voisinage d’ouvrages souterrains, Ph.D. thesis, Université Joseph Fourier, France

  7. Dehandschutter B, Vandycke S, Sintubin M, Vandenberghe N, Gaviglio P, Sizun J-P, Wouters L (2004) Microfabric of fractured Boom Clay at depth: a case study of brittle-ductile transitional clay behaviour. Appl Clay Sci 26:389–401

    Article  Google Scholar 

  8. Fredlund DG, Xing A (1994) Equations for the soil-water characteristic curve. Can Geotech J 31:521–532

    Article  Google Scholar 

  9. Gallipoli D, Wheeler SJ, Karstunen M (2003) Modelling the variation of degree of saturation in a deformable unsaturated soil. Géotechnique 53(1):105–112

    Article  Google Scholar 

  10. Geiser F (1999) Comportement mécanique d’un limon non saturé: étude expérimentale et modélisation constitutive, Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland

  11. Greenspan L (1976) Humidity fixed points of binary aqueous saturated solutions. J Res Natl Bureau Stand Phys Chem 81(1):89–96

    Google Scholar 

  12. Head KH (1980) Manual of soil laboratory testing, soil classification and compaction tests, vol 1. Pentech Press, London

    Google Scholar 

  13. Horseman ST, Winter MG, Entwistle DC (1987) Geotechnical characterization of boom clay in relation to the disposal od radioactive waste. Commission of the European Communities, EUR 10987, p 87

  14. McLaughlin CP, Magee TRA (1998) The determination of sorption isotherm and the isosteric heats of sorption for potatoes. J Food Eng 35:267–280

    Article  Google Scholar 

  15. Nuth M, Laloui L (2008) Advances in modelling hysteretic water retention curve in deformable soils. Comput Geotech 35(6):835–844

    Article  Google Scholar 

  16. O’Brien F (1948) The control of humidity by saturated salt solutions. J Sci Instrum 25:73–76

    Article  Google Scholar 

  17. Péron H, Hueckel T, Laloui L (2007) An improved volume measurement for determining soil water retention curves. Geotech Test J 30(1):1–8

    Google Scholar 

  18. Pham HQ, Fredlund DG, Barbour SL (2005) A study of hysteresis models for soil-water characteristic curves. Can Geotech J 42:1548–1568

    Article  Google Scholar 

  19. Ridley AM, Wray WK (1996) Suction measurement: a review of current theory and practices. In: Alonso EE, Delage P (eds) Proceedings of the 1st international conference on unsaturated soils (UNSAT 95), Paris, 1995. Balkema, Rotterdam, The Netherlands, pp 1293–1322

  20. Romero E (1999) Characterization and thermo-hydro-mechanical behaviour of unsaturated Boom clay: an experimental study, Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona, Spain

  21. Salager S, El Youssoufi MS, Saix C (2008) Temperature effect on hydric behaviour for unsaturated deformable soils. In: Proceedings of the 2nd Int. Conf. on mechanics of unsaturated soils, Weimar, Germany

  22. Salager S, El Youssoufi MS, Saix C (2010) Temperature effect on water retention phenomena in deformable soils—theoretical and experimental aspects. Eur J Soil Sci 61(1):97–107

    Article  Google Scholar 

  23. Sugii T, Yamada K, Kondou T (2002) “Relationship between soil-water characteristic curve and void ratio” unsaturated soils. In: Jucá JFT, de Campos TMP, Marinho FAM (eds) Proceedings of 3rd international conference on unsaturated soils (UNSAT 2002), Recife, Brazil, vol 1. Swets and Zeitlinger, Lisse, pp 209–214

    Google Scholar 

  24. Tang AM (2005) Effet de la température sur le comportement des barrières de confinement, Ph.D. thesis, Ecole Nationnale des Ponts et Chaussées, Paris

  25. Tang A-M, Cui Y-J (2005) Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay. Can Geotech J 42:287–296

    Article  Google Scholar 

  26. Vanapalli SK, Fredlund DG, Pufahl DE (1999) The influence of soil structure and stress history on the soil-water characteristic of a compacted till. Géotechnique 49(2):143–159

    Article  Google Scholar 

  27. Verbrugge JC, Fleureau JM (2002) Bases expérimentales du comportement des sols non saturés. In: Coussy O, Fleureau JM (eds) Mécanique des sols non saturés. Hermès Science, Paris, pp 69–112

    Google Scholar 

  28. Wexler A, Hasegawa S (1954) Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0 to 50°C. J Res Natl Bureau Stand 53(1):19–25

    Google Scholar 

  29. Winston PW, Bates DH (1960) Saturated solutions for the control of humidity in biological research. Ecology 41(1):232–237

    Article  Google Scholar 

  30. Zerhouni MI (1991) Rôle de la pression interstitielle négative dans le comportement des sols—application au calcul des routes, Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, Paris

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyesse Laloui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salager, S., Rizzi, M. & Laloui, L. An innovative device for determining the soil water retention curve under high suction at different temperatures. Acta Geotech. 6, 135–142 (2011). https://doi.org/10.1007/s11440-011-0141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-011-0141-8

Keywords

Navigation