Skip to main content
Log in

The dilative intake of poroelastic inclusions an alternative to the Mandel–Cryer effect

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study examines the time-dependent poromechanics behavior of a fluid-saturated spherical inclusion embedded inside a fluid-saturated porous medium with different poroelastic properties. Both media comprise compressible constituents with distinctively defined poroelastic parameters. It is assumed that the inclusion is subjected to a fluid source at the center. The problem is formulated and solved using Biot theory of poromechanics. The contrasts in inclusion and the medium matrix stiffnesses and their respective hydraulic conductivities can be recognized as two competing factors, which affect the inclusion’s rate of expansion during fluid injection. Findings show a certain type of behavior that the inclusion exhibits at the onset of fluid injection when having greater stiffness than the medium matrix, where the inclusion experiences some decrease in the pore pressure. Compared to what announced as the stress redistribution due the Mandel–Cryer effect in earlier researches on dilation of free spheres, this study shows that the associated phenomenon would be likewise attributed to the coupled nature of pressures and deformations in the theory of poroelasticity. However, it is a consequence of the inclusion-matrix stiffness contrast where a dilating free sphere can be regarded as a special case of this new problem. The asymptotic expansions of pressure terms verify the existence of such an effect. The results of this study would put forward very good insight in some engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A i :

Arbitrary constant of subdomain i

B i :

Arbitrary constant of subdomain i

B :

Skempton’s coefficient

G :

Shear modulus

P :

Pore fluid pressure

Q :

Fluid source

R :

The inclusion radius

V :

Volume

c :

Hydraulic diffusivity

f1(s):

Arbitrary function

g :

Shear modulus ratio

k :

Permeability

q :

Fluid point source strength

r :

Radial distance

t :

Time

u :

Displacement vector

β :

Similarity variable

δ(x) :

Dirac delta function

γ :

Loading efficiency

ε :

Volumetric strain (dilatation)

ζ :

Increment of fluid content

η ε :

Expansion coefficient

λ :

Hydraulic conductivity ratio

μ :

Viscosity

ν :

Drained Poisson ratio

ν u :

Undrained Poisson ratio

ρ :

Infinitesimal radius of the sphere enclosing the inclusion center

σ :

Stress

ξ :

The diffusivity ratio

1:

Indication of the inclusion property

2:

Indication of the matrix property

References

  1. Abousleiman YN, Kanj MY (2004) The generalized Lamé problem—part II: applications in poromechanics. J Appl Mech 71:180–189. doi:10.1115/1.1683800

    Article  MATH  Google Scholar 

  2. Abousleiman YN, Cheng AHD, Cui L (1996) Mandel’s problem revisited. Geotechnique 46:187–195

    Article  Google Scholar 

  3. Cheng AHD, Detournay E (1998) On singular integral equations and fundamental solutions of poroelasticity. Int J Solids Struct 35(34):4521–4555. doi:10.1016/S0020-7683(98)00082-1

    Article  MATH  MathSciNet  Google Scholar 

  4. Cryer CW (1963) A comparison of the three-dimensional consolidation theories of Biot and Terzaghi. Q J Mech Appl Math 16:401–412. doi:10.1093/qjmam/16.4.401

    Article  MATH  Google Scholar 

  5. Kodashima T, Kurashige M (1996) Thermal stresses in a fluid saturated poroelastic hollow sphere. J Therm Stresses 19:139–151. doi:10.1080/01495739608946166

    Article  Google Scholar 

  6. Li X (1999) Stress and displacement fields around a deep circular Tunnel With Partial sealing. Comput Geotech 24:125–140. doi:10.1016/S0266-352X(98)00035-4

    Article  Google Scholar 

  7. Li X, Flores-Berrons R (2002) Time dependant behavior of partially sealed circular tunnels. Comput Geotech 29:433–449. doi:10.1016/S0266-352X(02)00005-8

    Article  Google Scholar 

  8. Mandel J (1953) Consolidation de sols (Etude Mathematique). Geotechnique 3:287–299

    Article  Google Scholar 

  9. Mason DP, Solomon A, Nicolaysen LO (1991) Evolution of stress and strain during the consolidation of a fluid saturated porous elastic sphere. J Appl Phys 70(9):4724–4740. doi:10.1063/1.349065

    Article  Google Scholar 

  10. Mason DP, Solomon A, Nicolaysen LO (2002) Evolution of displacement and pore fluid pressure due to a point fluid source at the center of a porous elastic sphere. S Afr J Sci 98:473–480

    Google Scholar 

  11. Nicolaysen LO (1985) Renewed ferment in earth sciences- especially about power supplies for the core, for the mantel and for crises in the faunal record. S Afr J Sci 81:120–132

    Google Scholar 

  12. Pedrosa OA, Petbras J (1986) Pressure transient in stress sensitive formations. 56th California Regional Meeting of The Society Of Petroleum Engineers, CA, 2–4 April

  13. Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14(2):227–241. doi:10.1029/RG014i002p00227

    Article  Google Scholar 

  14. Rice JR, Rudnicki DA, Simons DA (1978) Deformations of spherical cavities and inclusions in fluid-infiltrated elastic materials. Int J Solids Struct 14:289–303. doi:10.1016/0020-7683(78)90039-2

    Article  MATH  Google Scholar 

  15. Selvadurai APS, Shirazi A (2004) The fluid-filled spherical cavity in a damage-susceptible poroelastic medium. Int J Damage Mech 13:347–370. doi:10.1177/1056789504044283

    Article  Google Scholar 

  16. Senjuntichai T, Rajapakse RKND (1993) Transient response of a circular cavity in a poroelastic medium. Int J Numer Anal Methods Geomech 17:357–383. doi:10.1002/nag.1610170602

    Article  MATH  Google Scholar 

  17. Skempton AW (1954) The pore-pressure coefficients A and B. Geotechnique 4:143–147

    Article  Google Scholar 

  18. Solomon A, Mason DP (1993) Numerical solution for the dilatation of a fluid saturated porous elastic sphere due to a point source of fluid at the center of the sphere. Int J Numer Anal Methods Geomech 17:699–714. doi:10.1002/nag.1610171003

    Article  MATH  Google Scholar 

  19. Stehfest H (1970) Numerical inversion of Laplace transforms. Commun ACM 13(1):47–49. doi:10.1145/361953.361969

    Article  Google Scholar 

  20. Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrology. Princeton University Press, USA, pp 89–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younane N. Abousleiman.

Appendices

Appendix 1: Arbitrary functions of solution

The arbitrary functions which are found from the solution of Eqs. 2124 are given below:

$$ A_{1} = {\frac{q}{3s}}\left\{ {{\frac{{ - \psi \omega + \left[ {\psi \omega - \left( {\psi - 1} \right)\theta s} \right]\cosh (\sqrt s ) - \left[ {\psi \omega + \theta s} \right]\sqrt s \sinh (\sqrt s )}}{{\left[ {\psi \omega + \theta s} \right]\sqrt s \cosh (\sqrt s ) + \left[ {\psi \omega + \left( {\psi - 1} \right)\theta s} \right]\sinh (\sqrt s )}}}} \right\} $$
(40)
$$ f_{1} \left( s \right) = {\frac{{q\gamma_{1} \left( {g - 1} \right)\left( {1 - \nu_{1} } \right)\left( {1 - 2\nu_{u1} } \right)}}{s}} \times \left\{ {{\frac{{\left[ {\psi \sqrt s - \sqrt s \cosh \left( {\sqrt s } \right) - \left( {\psi - 1} \right)\sinh \left( {\sqrt s } \right)} \right]}}{{\left[ {\psi \omega + \theta s} \right]\sqrt s \cosh \left( {\sqrt s } \right) + \left[ {\psi \omega + \left( {\psi - 1} \right)\theta s} \right]\sinh \sqrt s }}}} \right\} $$
(41)
$$ A_{2} = {\frac{{q\gamma_{1}^{2} \left( {1 - \nu_{1} } \right)\left( {1 - \nu_{u1} } \right)\left( {\nu_{u2} - \nu_{2} } \right){\text{e}}^{{\left( {{\frac{\psi }{\lambda }} - 1} \right)}} }}{{3\gamma_{2}^{2} gs\left( {1 - \nu_{2} } \right)\left( {1 - \nu_{u2} } \right)\left( {\nu_{u1} - \nu_{1} } \right)}}} \times \left\{ {{\frac{{\theta s^{{{\frac{3}{2}}}} - \omega \left[ {\sqrt s \cosh \left( {\sqrt s } \right) - \sinh \left( {\sqrt s } \right)} \right]}}{{\left[ {\psi \omega + \theta s} \right]\sqrt s \cosh \left( {\sqrt s } \right) + \left[ {\psi \omega + \left( {\psi - 1} \right)\theta s} \right]\sinh \sqrt s }}}} \right\} $$
(42)
$$ B_{2} = - {\frac{{q\gamma_{1} \left( {1 - \nu_{1} } \right)\left( {1 - \nu_{u1} } \right)}}{{3s^{2} \gamma_{2} \left( {1 - \nu_{2} } \right)\left( {1 - \nu_{u2} } \right)\left( {\nu_{u1} - \nu_{1} } \right)}}} \times \left\{ {{\frac{{\psi s^{{{\frac{3}{2}}}} \left[ {\gamma_{1} \left( {\nu_{u2} - \nu_{2} } \right)\theta + \chi } \right]}}{{\left[ {\psi \omega + \theta s} \right]\sqrt s \cosh \left( {\sqrt s } \right) + \left[ {\psi \omega + \left( {\psi - 1} \right)\theta s} \right]\sinh \sqrt s }}}} \right. + \left. {{\frac{{ - \left[ {\gamma_{1} \left( {\nu_{u2} - \nu_{2} } \right)\psi \omega + \psi s} \right]\sqrt s \cosh \left( {\sqrt s } \right) + \left[ {\gamma_{1} \left( {\nu_{u2} - \nu_{2} } \right)\psi \omega - \chi \left( {\psi - 1} \right)s} \right]\sinh \left( {\sqrt s } \right)}}{{\left[ {\psi \omega + \theta s} \right]\sqrt s \cosh \left( {\sqrt s } \right) + \left[ {\psi \omega + \left( {\psi - 1} \right)\theta s} \right]\sinh \sqrt s }}}} \right\} $$
(43)

where the constants ψ, θ, ω and χ are defined as:

$$ \psi = \lambda \left( {\sqrt {{\frac{s}{\xi }}} + 1} \right) $$
(44)
$$ \theta = \left( {1 - \nu_{1} } \right)\left[ {1 + \nu_{u1} + 2g\left( {1 - 2\nu_{u1} } \right)} \right] $$
(45)
$$ \omega = 6\left( {g - 1} \right)\left( {\nu_{u1} - \nu_{1} } \right) $$
(46)
$$ \chi = 3\gamma _{2} (1 - \nu _{2} )(1 - \nu _{{u2}} )(\nu _{{u1}} - \nu _{1} ) $$
(47)

Appendix 2: Special case solution for fluid injection at the center of a poroelastic inclusion inside an elastic matrix

Here, we consider the case involving no pore fluid in the matrix but within the inclusion. The ordinary boundary value equation for fluid content increment in Laplace domain can be written as follows:

$$ \tilde{\zeta^{\prime\prime}}_{1} \left( {r,s} \right) + {\frac{2}{r}}\tilde{\zeta^{\prime}}_{1} \left( {r,s} \right) - s\tilde{\zeta }_{1} \left( {r,s} \right) = 0 $$
(48)
$$ \tilde{\zeta }^{\prime}_{1} \left( {1,s} \right) = 0 $$
(49)
$$ \tilde{\zeta }^{\prime}_{1} \left( {1,s} \right) = 0 $$
(50)

Equation 54 accounts for the no-flow boundary condition at the inclusion surface. The solution is presented as below:

$$ \tilde{\zeta }_{1} \left( {r,s} \right) = {\frac{q}{3rs}}\left[ {\cosh \left( {\sqrt s r} \right) - {\frac{{\cosh \left( {\sqrt s } \right) - \sqrt s \sinh \left( {\sqrt s } \right)}}{{\sqrt s \cosh \left( {\sqrt s } \right) - \sinh \left( {\sqrt s } \right)}}}\sinh \left( {\sqrt s r} \right)} \right]. $$
(51)

Thereafter, the radial displacement and stress components can be obtained in a method similar to what presented in Sect. 2. The results are given below:

$$ u_{r1} \left( {r,s} \right) = {\frac{{\gamma_{1} }}{{r^{2} }}}\int\limits_{0}^{r} {x^{2} \tilde{\zeta }_{1} \left( {x,s} \right){\text{d}}x} + {\frac{r}{3}}A_{1} \left( s \right) $$
(52)
$$ \tilde{\sigma }_{rr1} \left( {r,s} \right) = - {\frac{{2\gamma_{1} }}{{r^{3} }}}\int\limits_{0}^{r} {x^{2} \tilde{\zeta }_{1} \left( {x,s} \right){\text{d}}x} + {\frac{{\left( {1 + \nu_{u1} } \right)}}{{3\left( {1 - 2\nu_{u1} } \right)}}}A_{1} \left( s \right). $$
(53)

The radial displacement and stress components in the matrix can be simply found from the classical theory of elasticity. They are written as:

$$ \tilde{u}_{r2} \left( {R,s} \right) = {\frac{{A_{2} (s)}}{r}} $$
(54)
$$ \tilde{\sigma }_{rr2} \left( {R,s} \right) = - G{\frac{{2A_{2} (s)}}{{r^{2} }}}. $$
(55)

The arbitrary functions A 1(s) and A 2(s) are found from the following boundary conditions:

$$ \tilde{u}_{r1} \left( {1,s} \right) = \tilde{u}_{r2} \left( {1,s} \right) $$
(56)
$$ \tilde{\sigma }_{rr1} \left( {1,s} \right) = g\tilde{\sigma }_{rr1} \left( {1,s} \right). $$
(57)

That gives:

$$ A_{1} (s) = {\frac{{ \, 2q \, \gamma_{1} ( - 1 + g) \, ( - 1 + 2\nu_{u1} )}}{{ \, s^{2} [1 + g(2 - 4\nu_{u1} ) + \nu_{u1} ]}}} $$
(58)
$$ A_{2} (s) = - {\frac{{q\gamma_{1} \, ( - 1 + \nu_{u1} )}}{{s^{2} [1 + g(2 - 4\nu_{u1} ) + \nu_{u1} ]}}}. $$
(59)

Substitution of Eqs. 58 and 59 into Eq. 52 yields Eq. 28.

The expansion parameter defined in Sect. 3.2 can be found as:

$$ \eta_{\varepsilon } = {\frac{{3\gamma_{1} \left( {1 - \nu_{ul} } \right)}}{{\left[ {\left( {1 + \nu_{ul} } \right) + 2g\left( {1 - 2\nu_{ul} } \right)} \right]}}}. $$
(60)

The plot of Eq. 60 is given in Fig. 10. It shows that if the inclusion consists of incompressible constituents (ν u1 = 0.5), the expansion would be the same as the loading efficiency parameter, where all curves meet at g = 1. The graph corresponding to ν u1 = 0.33 has been generated before in Fig. 4 by the solid curve corresponding to an impermeable boundary (λ → 0).

Fig. 10
figure 10

Variations of inclusion volume change with stiffness ratio at various undrained Poisson’s ratios of the inclusion surrounded by an elastic matrix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrabian, A., Abousleiman, Y.N. The dilative intake of poroelastic inclusions an alternative to the Mandel–Cryer effect. Acta Geotech. 4, 249–259 (2009). https://doi.org/10.1007/s11440-009-0098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-009-0098-z

Keywords

Navigation