Skip to main content
Log in

Impact of constitutive models on the numerical analysis of underground constructions

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The constitutive model frequently used in numerical calculations of tunnel excavation is linear-elastic perfectly plastic with a Mohr–Coulomb (MC) failure criterion. Generally, this leads to shallower and wider surface settlement troughs than those observed experimentally. It is therefore necessary to use adapted constitutive models for the design of underground works. In this paper, three constitutive models are implemented in a two-dimensional simulation of an underground excavation in plane strain: a linear-elastic perfectly plastic model (the MC model), an elastoplastic model with isotropic hardening [the hardening soil (HS) model, Schanz et al., Beyond 2000 in computational geotechnics, Balkema, Rotterdam, pp. 281–290, 1999] and an extension of this model which implies an evolution of the stiffness modulus in the small-strain range according to the strain level (the HS model with small-strain stiffness “HS-Small”, Benz, Small-strain stiffness of soils and its numerical consequences. Ph.D. thesis, Universitat Stuttgart, 189 pp., 2007). The study is based on the results of drained triaxial compression tests representing an overconsolidated clay (Gasparre, Advanced laboratory characterisation of London clay. Ph.D. thesis, Imperial College London, 598 pp., 2005); and is then applied to a shallow tunnel. The impact of the constitutive model is highlighted as well as the limits of the simplest constitutive model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

γ :

unit weight

γ 0.7 :

level of strains where the shear modulus reaches 70% of its initial value

ε p :

plastic strain tensor

ε pv :

plastic volumetric strain

κ :

hardening parameter

λ :

relaxation ratio in the λ-method

ν :

Poisson’s ratio

σ i :

principal stresses

φ :

angle of friction

ψ :

angle of dilatancy

c :

cohesion

D :

tunnel diameter

E :

drained Young’s modulus

E ref50 :

triaxial loading Young’s modulus

E refoed :

oedometric loading Young’s modulus

E refur :

unloading–reloading Young’s modulus

G 0 :

shear stiffness modulus

i :

the distance from tunnel centerline to point of inflection

K 0 :

ratio of initial (Benz [7]) horizontal to vertical effective stress

m :

a Janbu-type parameter

p :

mean pressure

p ref :

reference mean pressure

p p :

preconsolidation pressure

q :

deviatoric triaxial stress

S :

settlement of point y from the axis of the tunnel

S max :

the maximum settlement

References

  1. Addenbrooke TI, Potts DM, Puzrin AM (1997) The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction. Géotechnique 47(3):693–712

    Google Scholar 

  2. Al Hafez T (1997) Propriétés géotechniques des terrains du tunnel sous la Manche. Interprétation des mesures de déformations du revêtement avec calculs comparatifs. Thèse de doctorat, Ecole Centrale de Paris, France, 193p

  3. Almeida e Sousa J, Marques F, Lemos LL (2001) Túnel de término da Estação Alameda II. Análise do comportamento. Rev Port Geotecnia SPG 93:5–32

    Google Scholar 

  4. Atkinson JH, Sallfors G (1991) Experimental determination of soil properties. In: Proceedings of the 10th ECSMFE, Florence, vol 3, pp 915–956

  5. Attewell PB (1997) Ground movements caused by tunnelling in soil. In: Conference on large ground movements and structures, Cardiff, pp 812–984

  6. Bard E (1993) Comportement des matériaux granulaires secs et avec liant hydrocarboné. Thèse de doctorat, Ecole Centrale de Paris, France

  7. Benz T (2007) Small-strain stiffness of soils and its numerical consequences. Ph.D. thesis, Universitat Stuttgart, 189p

  8. Biarez J, Bougriou Z, Fayad T, Hammoud I, Liu W, Gomes Correia A (1999) Les modules de 10−5 à 10−1 pour les sols remaniés et non remaniés, pour les fondations des voies ferrées et les routes. In: Xth ECSMGE—geotechnical engineering for transportation infrastructure, The Netherlands, vol 3, pp 1737–1742

  9. Boháč J, Herle I, Mašín D (2002) Stress and strain dependent stiffness in a numerical model of a tunnel. In: Proceedings of the 2nd international conference on soil structure interaction in urban civil engineering. Zurich, Switzerland, pp 357–364

  10. Bolton MD, Dasari GR, Britto AM (1994) Putting small-strain non-linearity into modified cam clay model. In: Proceedings of the 8th international conference on computer methods and advances in geomechanics, Morgantown, West Virginia, pp 537–542

  11. Burland JB (1989) Small is beautiful—the stiffness of soils at small strains, Ninth Laurits Bjerrum memorial lecture. Can Geotech J 26:499–516

    Article  Google Scholar 

  12. Chapeau C (1991) Auscultation du sol pendant le creusement. Tunnel et ouvrages souterrains, Septembre/Octobre, No. 107, pp 235–245

  13. Clough GW, Schmidt B (1981) Design and performance of excavation and tunnels in soft clays. Soft clay engineering. Elsevier, Amsterdam, pp 269–276

    Google Scholar 

  14. Dias D (1999) Renforcement du front de taille des tunnels par boulonnage: Etude numérique et application à un cas réel en site urbain. Ph.D. thesis, INSA de Lyon, France, 320p

  15. Duncan JM, Chang CY (1970) Nonlinear analysis of stress and strain in soil. J Soil Mech Found Div ASCE96 96:1629–1693

    Google Scholar 

  16. Gasparre A (2005) Advanced laboratory characterisation of London clay. Ph.D. thesis, Imperial College London, 598p

  17. Gomes Correia A (2004) Características de deformabilidade dos solos que interessam à funcionalidade das estruturas. Rev Port Geotecnia SPG 100:103–122

    Google Scholar 

  18. Houlsby GT, Wroth CP (1991) The variation of shear modulus of a clay with pressure and overconsolidated ratio. Soil Found 31(3):138–143

    Google Scholar 

  19. Janbu N (1963) Soil compressibility as determined by oedometer and triaxial tests. In: European conference on soil mechanics and foundation engineering, Wiesbaden, Germany, vol 1, pp 19–25

  20. Jardine RJ, Potts DM, Fourie AB, Burland JB (1986) Studies of the influence of non-linear stress strain characteristics in soil-structure interaction. Géotechnique 36(3):377–396

    Google Scholar 

  21. Karakus M (2007) Appraising the methods accounting for 3D tunnel effects in 2D plane strain FE analysis. Tunn Undergr Space Technol 22:47–56

    Article  Google Scholar 

  22. Mair RJ, Taylor RN, Bracegirdle (1993) Subsurface settlement profiles above tunnels in clay. Géotechnique 43(2):315–320

    Article  Google Scholar 

  23. Mašín D, Herle I (2005) Numerical analyses of a tunnel in London clay using different constitutive models. In: Proceedings of the 5th international symposium TC28 geotechnical aspects of underground construction in soft ground, Amsterdam, The Netherlands, pp 595–600

  24. Möller S (2006) Tunnel induced settlements and structural forces in linings. Ph.D. thesis, Universitat Stuttgart, 191p

  25. O’Reilly MP, New BM (1982) Settlements above tunnels in the United Kingdom—their magnitudes and prediction. Tunnelling’ 82, London, IMM, pp 173–181

  26. Panet M (1995) Le calcul des tunnels par la méthode convergence-confinement. In: Presses de l’ENPC, Paris

  27. Rankin WJ (1987) Ground movements resulting from urban tunnelling: predictions and effects. Geological society engineering geology special publications, No. 5, pp 79–92

  28. Schanz T, Vermeer PA, Bonnier PG (1999) Formulation and verification of the Hardening-Soil Model. Beyond 2000 in computational geotechnics, Balkema, Rotterdam, pp 281–290

  29. Sagaseta C (1987) Evaluation of surface movements above tunnels, a new approach. Colloque interaction sol/structure. Press ENPC, Paris, pp 445–452

    Google Scholar 

  30. Viggiani G, Atkinson JH (1995) Stiffness of fine-grained soil at very small strains. Géotechnique 45(2):249–265

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Hejazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejazi, Y., Dias, D. & Kastner, R. Impact of constitutive models on the numerical analysis of underground constructions. Acta Geotech. 3, 251–258 (2008). https://doi.org/10.1007/s11440-008-0056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-008-0056-1

Keywords

Navigation