Skip to main content
Log in

Effect of rod friction on vane shear tests in very soft organic harbour mud

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Very soft organic harbour mud is increasingly used as a filling and construction material in harbour construction and reorganization. The undrained shear strength of such soft sediments is the critical geotechnical soil parameter with regard to any specific construction design. Field and laboratory vane shear testing is a standard method to quickly determine this important parameter. So far, the effect of rod friction on vane shear tests in very soft organic soils is unclear. In this study we present results from laboratory experiments on harbour mud from a construction site in northern Germany. Relations among vane and rod geometry, penetration depth, water content, rod friction and undrained shear strength are derived. Based on these relations the influence of rod friction on vane shear test results is investigated. The results indicate that field and laboratory vane shear test measurements may be significantly influenced by rod friction. Methods are proposed to correct for the rod influence, which is shown to increase with rising water contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A rod :

effective rod shear area

A vane :

effective vane shear area

Ctot :

total carbon content

s u :

undrained shear strength

s u,tot :

s u + apparent shear strength

d :

vane diameter

D :

rod diameter

DSC:

deep sea carrier

e :

void ratio

f rod :

rod friction

h :

vane height

I P :

plasticity index

R²:

coefficient of correlation

R rod :

rod-induced friction force

SEM:

scanning electron microscope

SSC:

short sea carrier

Stot :

total sulphur content

t :

vane thickness

T :

torque

TOC:

total organic carbon

T rod :

rod-induced torque

T vane :

vane-induced torque

V Gl :

loss on ignition

w :

water content

w L :

liquid limit

w P :

plastic limit

XRD:

X-ray-diffraction

z :

penetration of rod

z crit :

critical penetration of rod

α:

friction-strength-ratio

ν :

coefficient of geometry

ρ :

bulk density

ρ d :

dry density

ρ s :

particle density

References

  1. ASTM 4648–87 (1987) Standard test method for laboratory miniature vane shear test for saturated fine-grained clayey soil. ASTM Standard

  2. von Bloh G (1995) Verfahren zur Ermittlung des Scherverhaltens von Bagger- und Klärschlamm mit der Flügelsonde. PhD Thesis, Hannover, Germany

  3. Chandler RJ, Martins JP (1982) An experimental study of skin friction around piles in clay. Géotechnique 32(2):119–132

    Article  Google Scholar 

  4. Chari TR, Guha SN, Muthukrishnajah K (1978) Adhesive resistance of underconsolidated sediments. Oceans 10:497–502

    Article  Google Scholar 

  5. Craig RF (1997) Soil mechanics. E & FN Spon, London

    Google Scholar 

  6. DIN 18122-1 (2000) (German Standards Organisation) Soil-investigation and testing—consistency limits-Part 1: determination of liquid and plastic limit

  7. DIN 18123 (1996) (German Standards Organisation) Soil-investigation and testing—determination of grain-size distribution

  8. DIN 18128 (2002) (German Standards Organisation) Soil-investigation and testing—determination of ignition loss

  9. Erchul RA, Smith RJ (1969) Lubricant and polymer reduction of sediment adhesion. In: Proceedings of the ASCE conference: civil engineering in the oceans II, pp 621–640

  10. Flaate K (1966) Factors influencing the results of vane tests. Can Geotech J 3:18–31

    Google Scholar 

  11. Kay S, Goedemoed SS, Vermeijden CA (2005) Influence of salinity on soil properties. In: Gourvenec S, Cassidy M (eds) Frontiers in offshore geotechnics: ISFOG 2005. Taylor & Francis, London, pp 1087–1093

  12. Konrad J-M, Roy M (1987) Bearing capacity of friction piles in marine clay. Géotechnique 37(2):163–175

    Google Scholar 

  13. Lambe TW (1953) The structure of inorganic soils. In: Proceedings of ASCE 94

  14. Leinenkugel HJ (1976) Deformations- und Festigkeitsverhalten bindiger Erdstoffe. Experimentelle Ergebnisse und ihre physikalische Deutung. Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik. PhD Thesis, Karlsruhe, Germany

  15. Metzen JF (2006) Finite Elemente Modellierung zum Konsolidierungsverhalten von frisch umgelagertem des Osthafen, Bremerhaven. Bachelor Thesis, Bremen, Germany

  16. Spaethe A (2002) Einfluss des Kationenmilieus auf Oberflächenladung und die hydraulischen und mechanischen Eigenschaften von Tonen. PhD Thesis, Institute für Bodenkunde, Universität Hannover, Germany

  17. Tan TK (1957) Discussion. In: Proceedings of the 4th international conference on soil mechanics and foundation engineering, vol 3

  18. Unesco (1981) Unesco Technical Papers in marine science 36/1981. In: 19th Joint Panel

  19. Wang MC, Demars KR, Nacci VA (1977) Breakout capacity of model suction anchors in soil. Can Geotech J 14(2):246–257

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) as part of the DFG Research Center Ocean Margins (RCOM) of the University of Bremen No. RCOM 0539. The authors would like to sincerely thank Matthias Lange of the Research Center Ocean Margins of the University of Bremen for his technical support in connection with this article. Furthermore, we would also like to sincerely thank Bernd Grupe of the Technical University of Berlin who provided the vane shear test apparatus. Our special thanks go to our industry cooperating partners Christoph Tarras from Bremenports Consult GmbH Bremerhaven, Kai Petereit and Michael Lux from PHW Hamburg and Dirk Lesemann from Knabe Beratende Ingenieure GmbH Hamburg for providing the sample material and the presented field data as well as their general support and access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F. Schlue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlue, B.F., Mörz, T. & Kreiter, S. Effect of rod friction on vane shear tests in very soft organic harbour mud. Acta Geotech. 2, 281–289 (2007). https://doi.org/10.1007/s11440-007-0047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-007-0047-7

Keywords

Navigation