Skip to main content
Log in

A micro photocatalytic fuel cell with an air-breathing, membraneless and monolithic design

平铺式无膜自呼吸阴极微型光催化燃料电池

  • Article
  • Engineering Sciences
  • Published:
Science Bulletin

Abstract

In this study, a membraneless, monolithic micro photocatalytic fuel cell with an air-breathing cathode was developed for simultaneous wastewater treatment and electricity generation. In this newly-developed micro photocatalytic fuel cell, the photoanode and cathode were arranged with a shoulder-to-shoulder design, forming two planar electrodes. Such design offers several advantages of enhanced mass transfer, uniform light distribution, short light transfer path, membrane elimination and easy fabrication, integration, and compatibility with other microdevices. The performance of this type fuel cell was evaluated by using methanol as a model pollutant under the alkaline condition. Experimental results indicated the developed micro photocatalytic fuel cell was able to show good photo-response to the illumination and satisfactory performance as well as durability. Parametric study on the cell performance was also performed. It was found that increasing the light intensity, methanol concentration and KOH concentration could improve the cell performance. But for the effect of the liquid flow rate, it was shown that the cell performance firstly increased with increasing the liquid flow rate and then decreased with further increasing the liquid flow rate. This study not only opens a new avenue for the design of the micro photocatalytic fuel cell but also is helpful for the optimization of the operating conditions.

摘要

本文提出了一种平铺式无膜自呼吸阴极微型光催化燃料电池用以处理废水的同时产生电。在这个新开发的微型光催化燃料电池中,阴阳两极并行排列布置在同一个平面上,形成两个平行电极。这种设计具有强化传质、光分布均匀、光程短、无膜和容易制备、集成及与其他微型设备兼容等优点。新开发的光催化燃料电池采用甲醇作为模型燃料,在碱性环境中测试评价其性能。结果表明,该微型光催化燃料电池具有良好的光响应特性、电池性能和运行稳定性。另外,还研究了不同运行参数对电池性能的影响规律。结果表明增加光照强度、甲醇浓度和氢氧化钾浓度均有益于电池性能提升。随着进液速度的增加,电池性能先增强后减弱。本工作不仅为微型光催化燃料电池的结构设计提供了新思路,而且为优化运行参数提供了借鉴。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Smol JP (2009) Pollution of lakes and rivers: a paleoenvironmental perspective. Wiley-Blackwell, United Kingdom

  2. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448

    Article  CAS  PubMed  Google Scholar 

  3. Malmqvist B, Rundle S (2002) Threats to the running water ecosystems of the world. Environ Conserv 29:134–153

    Article  Google Scholar 

  4. Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Orhon D, Okutman D, Insel G (2002) Characterisation and biodegradation of settleable organic matter for domestic wastewater. Water SA 28:299–306

    Article  CAS  Google Scholar 

  6. Joss A, Zabczynski S, Göbel A et al (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696

    Article  CAS  PubMed  Google Scholar 

  7. Qualls RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586

    Article  CAS  Google Scholar 

  8. Azhar MR, Abid HR, Sun H et al (2016) Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. J Colloid Interface Sci 478:344–352

    Article  CAS  PubMed  Google Scholar 

  9. Davis JA, Gloor R (1981) Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight. Environ Sci Technol 15:1223–1229

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Pena M, Coca M, Gonzalez G et al (2003) Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere 51:893–900

    Article  CAS  PubMed  Google Scholar 

  11. Oh JY, Choi SD, Kwon HO et al (2016) Leaching of polycyclic aromatic hydrocarbons (PAHs) from industrial wastewater sludge by ultrasonic treatment. Ultrason Sonochem 33:61–66

    Article  CAS  PubMed  Google Scholar 

  12. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682

    Article  CAS  PubMed  Google Scholar 

  13. Eckenfelder WW, Englande AJ (1996) Chemical/petrochemical wastewater management—past, present and future. Water Sci Technol 34:1–7

    Article  CAS  Google Scholar 

  14. Reemtsma T, Jekel M (1997) Dissolved organics in tannery wastewaters and their alteration by a combined anaerobic and aerobic treatment. Water Res 31:1035–1046

    Article  CAS  Google Scholar 

  15. Andreozzi R, Caprio V, Insola A et al (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  16. Pant D, Singh A, Van Bogaert G et al (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263

    Article  CAS  Google Scholar 

  17. Li J, Wu N (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5:1360–1384

    Article  CAS  Google Scholar 

  18. Pelentridou K, Stathatos E, Karasali H et al (2009) Photodegradation of the herbicide azimsulfuron using nanocrystalline titania films as photocatalyst and low intensity black light radiation or simulated solar radiation as excitation source. J Hazard Mater 163:756–760

    Article  CAS  PubMed  Google Scholar 

  19. Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a re-emerging research field. J Hazard Mater 185:575–590

    Article  CAS  PubMed  Google Scholar 

  20. Kaneko M, Ueno H, Ohnuki K et al (2007) Direct electrical power generation from urine, wastes and biomass with simultaneous photodecomposition and cleaning. Biosens Bioelectron 23:140–143

    Article  CAS  PubMed  Google Scholar 

  21. Canterino M, Di Somma I, Marotta R et al (2009) Energy recovery in wastewater decontamination: simultaneous photocatalytic oxidation of an organic substrate and electricity generation. Water Res 43:2710–2716

    Article  CAS  PubMed  Google Scholar 

  22. Antoniadou M, Lianos P (2009) Near ultraviolet and visible light photoelectrochemical degradation of organic substances producing electricity and hydrogen. J Photochem Photobiol A 204:69–74

    Article  CAS  Google Scholar 

  23. Kaneko M, Ueno H, Saito R et al (2009) Biophotochemical cell (BPCC) to photodecompose biomass and bio-related compounds by UV irradiation with simultaneous electrical power generation. J Photochem Photobiol A 205:168–172

    Article  CAS  Google Scholar 

  24. Kaneko M, Suzuki S, Ueno H et al (2010) Photoelectrochemical decomposition of bio-related compounds at a nanoporous semiconductor film photoanode and their photocurrent–photovoltage characteristics. Electrochim Acta 55:3068–3074

    Article  CAS  Google Scholar 

  25. Díaz-Real JA, Ortiz-Ortega E, Gurrola MP et al (2016) Light-harvesting Ni/TiO2 nanotubes as photo-electrocatalyst for alcohol oxidation in alkaline media. Electrochim Acta 206:388–399

    Article  CAS  Google Scholar 

  26. Beranek R, Neumann B, Sakthivel S et al (2007) Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies. Chem Phys 339:11–19

    Article  ADS  CAS  Google Scholar 

  27. Zhai C, Zhu M, Pang F et al (2016) High efficiency photoelectrocatalytic methanol oxidation on CdS quantum dots sensitized Pt electrode. ACS Appl Mater Interfaces 8:5972–5980

    Article  CAS  PubMed  Google Scholar 

  28. Thomalla M, Tributsch H (2006) Photosensitization of nanostructured TiO2 with WS2 quantum sheets. J Phys Chem B 110:12167–12171

    Article  CAS  PubMed  Google Scholar 

  29. Ma H, Wang H, Wu T et al (2016) Highly active layered double hydroxide-derived cobalt nano-catalysts for p-nitrophenol reduction. Appl Catal B Environ 180:471–479

    Article  CAS  Google Scholar 

  30. Antoniadou M, Vaiano V, Sannino D et al (2013) Photocatalytic oxidation of ethanol using undoped and Ru-doped titania: acetaldehyde, hydrogen or electricity generation. Chem Eng J 224:144–148

    Article  CAS  Google Scholar 

  31. Li L, Chen R, Liao Q et al (2014) High surface area optofluidic microreactor for redox mediated photocatalytic water splitting. Int J Hydrog Energy 39:19270–19276

    Article  CAS  Google Scholar 

  32. Li L, Wang G, Chen R et al (2014) Optofluidics based micro-photocatalytic fuel cell for efficient wastewater treatment and electricity generation. Lab Chip 14:3368–3375

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  33. Zhou Y, Basu S, Wohlfahrt KJ et al (2016) A microfluidic platform for trapping, releasing and super-resolution imaging of single cells. Sens Actuators B Chem 232:680–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Xu H, Luo J et al (2016) A novel label-free microfluidic paper-based immunosensor for highly sensitive electrochemical detection of carcinoembryonic antigen. Biosens Bioelectron 83:319–326

    Article  CAS  PubMed  Google Scholar 

  35. Tominaka S, Ohta S, Osaka T et al (2011) Prospects of on-chip fuelcell performance: improvement based on numerical simulation. Energy Environ Sci 4:162–171

    Article  CAS  Google Scholar 

  36. Tominaka S, Ohta S, Obata H et al (2008) On-chip fuel cell: micro direct methanol fuel cell of an air-breathing, membraneless, and monolithic design. J Am Chem Soc 130:10456–10457

    Article  CAS  PubMed  Google Scholar 

  37. Antoniadou M, Sfaelou S, Lianos P (2014) Quantum dot sensitized titania for photo-fuel-cell and for water splitting operation in the presence of sacrificial agents. Chem Eng J 254:245–251

    Article  CAS  Google Scholar 

  38. Kaneko M, Nemoto J, Ueno H et al (2006) Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode. Electrochem Commun 8:336–340

    Article  CAS  Google Scholar 

  39. Shu D, Wu J, Gong Y et al (2014) BiOI-based photoactivated fuel cell using refractory organic compounds as substrates to generate electricity. Catal Today 224:13–20

    Article  CAS  Google Scholar 

  40. Ueno H, Nemoto J, Ohnuki K et al (2009) Photoelectrochemical reaction of biomass-related compounds in a biophotochemical cell comprising a nanoporous TiO2 film photoanode and an O2-reducing cathode. J Appl Electrochem 39:1897–1905

    Article  CAS  Google Scholar 

  41. Antoniadou M, Kondarides DΙ, Labou D et al (2010) An efficient photoelectrochemical cell functioning in the presence of organic wastes. Solar Energy Mater Solar Cells 94:592–597

    Article  CAS  Google Scholar 

  42. Zhang H, Wang H, Leung MKH et al (2016) Understanding the performance of optofluidic fuel cells: experimental and theoretical analyses. Chem Eng J 283:1455–1464

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (51576021, 51222603, 51276208 and 51325602) and the National High-Tech R&D Program of China (2015AA043503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Chen, Xun Zhu or Liang An.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, M., Chen, R., Zhu, X. et al. A micro photocatalytic fuel cell with an air-breathing, membraneless and monolithic design. Sci. Bull. 61, 1699–1710 (2016). https://doi.org/10.1007/s11434-016-1178-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1178-8

Keywords

关键词

Navigation