Skip to main content
Log in

High-quality perovskite in thick scaffold: a core issue for hole transport material-free perovskite solar cells

  • Progress
  • Materials Science
  • Published:
Science Bulletin

Abstract

Organic–inorganic perovskite solar cells (PSCs) have attracted intense attention in the last few years due to the phenomenal increase in power conversion efficiency (PCE), but their low stability has greatly hindered their practical application. By removing unstable hole transport materials (HTM), the device stability of HTM-free PSCs has been greatly improved. However, the PCE has largely lagged behind those of HTM-based PSCs. We contend that deposition of high-quality perovskite into a thick scaffold is the key to achieving high-performance, HTM-free PSCs. Indeed, a few deposition methods have been used to successfully deposit a high-quality perovskite layer into a relatively thick TiO2 scaffold, hence producing PSCs with relatively high PCEs. In this review, we will introduce the basic working principle of HTM-free PSCs and analyze the important role of thick TiO2 scaffold. Most importantly, the problems of the conventional perovskite deposition methods in thick TiO2 scaffold will be examined and some recent successful deposition methods will be surveyed. Finally, we will draw conclusions and highlight some promising research directions for HTM-free PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y et al (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  PubMed  Google Scholar 

  2. Yang WS, Noh JH, Jeon NJ et al (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234–1237

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Li X, Bi D, Yi C et al (2016) A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353:58–62

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Berhe TA, Su WN, Chen CH et al (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9:323–356

    Article  CAS  Google Scholar 

  5. Docampo P, Bein T (2016) A long-term view on perovskite optoelectronics. Acc Chem Res. doi:10.1021/acs.accounts.5b00465

    PubMed  Google Scholar 

  6. Shahbazi M, Wang H (2016) Progress in research on the stability of organometal perovskite solar cells. Sol Energy 123:74–87

    Article  ADS  CAS  Google Scholar 

  7. Wang D, Wright M, Elumalai NK et al (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147:255–275

    Article  CAS  Google Scholar 

  8. Ye M, Hong X, Zhang F et al (2016) Recent advancements in perovskite solar cells: flexibility, stability and large scale. J Mater Chem A 4:6755–6771

    Article  CAS  Google Scholar 

  9. Etgar L, Gao P, Xue Z et al (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134:17396–17399

    Article  CAS  PubMed  Google Scholar 

  10. Ku Z, Rong Y, Xu M et al (2013) Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci Rep 3:3132

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Stranks SD, Eperon GE, Grancini G et al (2013) Electron–hole diffusion lengths exceeding 1 μm in an organometal trihalide perovskite absorber. Science 342:341–344

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Xing G, Mathews N, Sun S et al (2013) Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342:344–347

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Mei A, Li X, Liu L et al (2014) A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345:295–298

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Wei Z, Chen H, Yan K et al (2014) Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem 126:13455–13459

    Article  Google Scholar 

  15. Zhang F, Yang X, Wang H et al (2014) Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl Mater Interfaces 6:16140–16146

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Wei Z, Zheng X et al (2015) A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15:216–226

    Article  CAS  Google Scholar 

  17. Wei ZH, Zheng XL, Chen HN et al (2015) A multifunctional C plus epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. J Mater Chem A 3:16430–16434

    Article  CAS  Google Scholar 

  18. Xiao Y, Han G, Chang Y et al (2015) Investigation of perovskite-sensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells. J Power Sources 286:118–123

    Article  CAS  Google Scholar 

  19. Chen H, Wei Z, He H et al (2016) Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14 %. Adv Energy Mater. doi:10.1002/aenm.201502087

    Google Scholar 

  20. Laban WA, Etgar L (2013) Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ Sci 6:3249–3253

    Article  CAS  Google Scholar 

  21. Aharon S, Gamliel S, Cohen BE et al (2014) Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys Chem Chem Phys 16:10512–10518

    Article  CAS  PubMed  Google Scholar 

  22. Zheng X, Wei Z, Chen H et al (2016) Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale 8:6393–6402

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Wei Z, Yan K, Chen H et al (2014) Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ Sci 7:3326–3333

    Article  CAS  Google Scholar 

  24. Zheng X, Wei Z, Chen H et al (2015) In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. J Energy Chem 24:736–743

    Article  Google Scholar 

  25. Wei ZH, Chen HN, Yan KY et al (2015) Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J Mater Chem A 3:24226–24231

    Article  CAS  Google Scholar 

  26. Yan KY, Wei ZH, Li JK et al (2015) High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small 11:2269–2274

    Article  CAS  PubMed  Google Scholar 

  27. Park NG (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18:65–72

    Article  CAS  Google Scholar 

  28. Lin Q, Armin A, Nagiri RCR et al (2014) Electro-optics of perovskite solar cells. Nat Photon 9:106–112

    Article  ADS  CAS  Google Scholar 

  29. Ball JM, Stranks SD, Horantner MT et al (2015) Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ Sci 8:602–609

    Article  CAS  Google Scholar 

  30. Jeon NJ, Noh JH, Kim YC et al (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13:897–903

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Yantara N, Sabba D, Yanan F et al (2015) Loading of mesoporous titania films by CH3NH3PbI3 perovskite, single step vs. sequential deposition. Chem Commun 51:4603–4606

    Article  CAS  Google Scholar 

  32. Cao DH, Stoumpos CC, Malliakas CD et al (2014) Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? APL Mater 2:091101

    Article  ADS  CAS  Google Scholar 

  33. Fu Y, Meng F, Rowley MB et al (2015) Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J Am Chem Soc 137:5810–5818

    Article  CAS  PubMed  Google Scholar 

  34. Chen H, Zheng XL et al (2016) Amorphous precursor route to the conformable oriented crystallization of CH3NH3PbBr3 in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells. J Mater Chem A. doi:10.1039/C6TA06115J

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Young Talent of “Zhuoyue” Program of Beihang University, the HK-RGC General Research Funds (16300915) and the HK Innovation and Technology Fund (ITS/004/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihe Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yang, S. High-quality perovskite in thick scaffold: a core issue for hole transport material-free perovskite solar cells. Sci. Bull. 61, 1680–1688 (2016). https://doi.org/10.1007/s11434-016-1164-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1164-1

Keywords

Navigation