Skip to main content
Log in

A reciprocal inhibitory relationship between adiponectin and mammalian cytosolic thioredoxin

  • Article
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

Thioredoxin is a redox protein while adiponectin is an adipokine. Their relationship has been less appreciated. Here we show that in serum of patients with acute exacerbations of chronic obstructive Pulmonary Disease, decreased activity of thioredoxin coexists with increased level of adiponectin as partial pressure of arterial oxygen decreases. From the results with adiponectin-knockout mice and in vitro experiments, we have found a reciprocal inhibitory relationship, by which adiponectin inhibits cytosolic thioredoxin (Trx1) expression, whereas serum Trx1 influences adiponectin multimerization. The association between extracellular Trx1 and adiponectin attenuates their functions. This relationship is dynamic, and correlated with a body’s physiological conditions.

摘要

氧化还原蛋白“硫氧还蛋白”和脂肪细胞因子“脂联素”间的关系鲜有报道。我们发现,慢性阻塞性肺疾病急性发作期(AECOPD)患者, 随着动脉血氧分压降低, 血清脂联素水平显著增高, 并伴随着血清硫氧还蛋白活性显著降低。通过分析脂联素基因敲除小鼠及体外细胞和分子水平上的机制探讨, 我们揭示了脂联素和胞质硫氧还蛋白(Trx1)间的相互抑制关系。脂联素能抑制Trx1表达,而血清Trx1可影响脂联素聚集。此外,脂联素和Trx1通过形成复合物, 影响彼此的生物学活性。这种分子间的动态调控关联着机体的生理状态。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schulz C, Petrig V, Wolf K et al (2003) Upregulation of MCAM in primary bronchial epithelial cells from patients with COPD. Eur Respir J 22:450–456

    Article  CAS  PubMed  Google Scholar 

  2. Bafadhel M, McKenna S, Terry S et al (2011) Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med 184:662–671

    Article  PubMed  Google Scholar 

  3. Wouters EF (2013) Adiponectin: a novel link between adipose tissue and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 188:522–523

    Article  CAS  PubMed  Google Scholar 

  4. Krommidas G, Kostikas K, Papatheodorou G et al (2010) Plasma leptin and adiponectin in COPD exacerbations: associations with inflammatory biomarkers. Respir Med 104:40–46

    Article  PubMed  Google Scholar 

  5. Brulotte CA, Lang ES (2012) Acute exacerbations of chronic obstructive pulmonary disease in the emergency department. Emerg Med Clin N Am 30:223–247, vii

  6. Tomoda K, Yoshikawa M, Itoh T et al (2007) Elevated circulating plasma adiponectin in underweight patients with COPD. Chest 132:135–140

    Article  CAS  PubMed  Google Scholar 

  7. Pajvani UB, Du X, Combs TP et al (2003) Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. J Biol Chem 278:9073–9085

    Article  CAS  PubMed  Google Scholar 

  8. Neumeier M, Weigert J, Schaffler A et al (2006) Different effects of adiponectin isoforms in human monocytic cells. J Leukoc Biol 79:803–808

    Article  CAS  PubMed  Google Scholar 

  9. Kim JA, Nunez M, Briggs DB et al (2012) Extracellular conversion of adiponectin hexamers into trimers. Biosci Rep 32:641–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsao TS, Tomas E, Murrey HE et al (2003) Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. J Biol Chem 278:50810–50817

    Article  CAS  PubMed  Google Scholar 

  11. Liu M, Zhou L, Xu A et al (2008) A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. Proc Natl Acad Sci USA 105:18302–18307

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu J, Holmgren A (2014) The thioredoxin superfamily in oxidative protein folding. Antioxid Redox Signal 21:457–470

    Article  CAS  PubMed  Google Scholar 

  13. Holmgren A (1995) Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3:239–243

    Article  CAS  PubMed  Google Scholar 

  14. Xing SQ, Zhang CG, Yuan JF et al (2015) Adiponectin induces apoptosis in hepatocellular carcinoma through differential modulation of thioredoxin proteins. Biochem Pharmacol 93:221–231

    Article  CAS  PubMed  Google Scholar 

  15. Lehtonen ST, Ohlmeier S, Kaarteenaho-Wiik R et al (2008) Does the oxidative stress in chronic obstructive pulmonary disease cause thioredoxin/peroxiredoxin oxidation? Antioxid Redox Signal 10:813–819

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura H, Herzenberg LA, Bai J et al (2001) Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc Natl Acad Sci USA 98:15143–15148

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Drost EM, Skwarski KM, Sauleda J et al (2005) Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax 60:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arner ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  CAS  PubMed  Google Scholar 

  19. Bathoorn E, Kerstjens H, Postma D et al (2008) Airways inflammation and treatment during acute exacerbations of COPD. Int J Chron Obstruct Pulm Dis 3:217–229

    Google Scholar 

  20. Bertini R, Howard OMZ, Dong HF et al (1999) Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J Exp Med 189:1783–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sato A, Hoshino Y, Hara T et al (2008) Thioredoxin-1 ameliorates cigarette smoke-induced lung inflammation and emphysema in mice. J Pharmacol Exp Ther 325:380–388

    Article  CAS  PubMed  Google Scholar 

  22. Kent BD, Mitchell PD, McNicholas WT (2011) Hypoxemia in patients with COPD: cause, effects, and disease progression. Int J Chron Obstruct Pulm Dis 6:199–208

    Google Scholar 

  23. Zhong L, Arner ES, Ljung J et al (1998) Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J Biol Chem 273:8581–8591

    Article  CAS  PubMed  Google Scholar 

  24. Zhai G, Zhong L (2010) N-terminal affinity tags may lead to increased sensitivity of human thioredoxin-1 to oxidants. Chin J Biochem Mol Biol 26:243–253

    CAS  Google Scholar 

  25. Vestbo J, Hurd SS, Agusti AG et al (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187:347–365

    Article  CAS  PubMed  Google Scholar 

  26. Huang J, Xu J, Tian L et al (2014) A thioredoxin reductase and/or thioredoxin system-based mechanism for antioxidant effects of ambroxol. Biochimie 97:92–103

    Article  CAS  PubMed  Google Scholar 

  27. Wu YF, Yang LJ, Zhong LW (2010) Decreased serum levels of thioredoxin in patients with coronary artery disease plus hyperhomocysteinemia is strongly associated with the disease severity. Atherosclerosis 212:351–355

    Article  CAS  PubMed  Google Scholar 

  28. Arner ES, Zhong L, Holmgren A (1999) Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Methods Enzymol 300:226–239

    Article  CAS  PubMed  Google Scholar 

  29. Wang P, Wu Y, Li X et al (2013) Thioredoxin and thioredoxin reductase control tissue factor activity by thiol redox-dependent mechanism. J Biol Chem 288:3346–3358

    Article  CAS  PubMed  Google Scholar 

  30. Takuwa A, Yoshida T, Maruno T et al (2016) Ordered self-assembly of the collagenous domain of adiponectin with noncovalent interactions via glycosylated lysine residues. FEBS Lett 590:195–201

    Article  CAS  PubMed  Google Scholar 

  31. Miller M, Cho JY, Pham A et al (2009) Adiponectin and functional adiponectin receptor 1 are expressed by airway epithelial cells in chronic obstructive pulmonary disease. J Immunol 182:684–691

    Article  CAS  PubMed  Google Scholar 

  32. Soderberg A, Sahaf B, Rosen A (2000) Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: presence in human plasma. Cancer Res 60:2281–2289

    CAS  PubMed  Google Scholar 

  33. Karg E, Klivenyi P, Bencsik K et al (2003) Alpha-tocopherol and NADPH in the erythrocytes and plasma of multiple sclerosis patients. Effect of interferon-beta-1b treatment. Eur Neurol 50:215–219

    Google Scholar 

  34. Qi L, Saberi M, Zmuda E et al (2009) Adipocyte CREB promotes insulin resistance in obesity. Cell Metab 9:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu M, Liu F (2010) Transcriptional and post-translational regulation of adiponectin. Biochem J 425:41–52

    Article  CAS  Google Scholar 

  36. Lv T, Wang SD, Bai J (2013) Thioredoxin-1 was required for CREB activity by methamphetamine in rat pheochromocytoma cells. Cell Mol Neurobiol 33:319–325

    Article  CAS  PubMed  Google Scholar 

  37. Wang JL, Yang H, Li WJ et al (2015) Thioredoxin 1 upregulates FOXO1 transcriptional activity in drug resistance in ovarian cancer cells. Biochim Biophys Acta 1852:395–405

    Article  CAS  PubMed  Google Scholar 

  38. Fan W, Imamura T, Sonoda N et al (2009) FOXO1 transrepresses peroxisome proliferator-activated receptor gamma transactivation, coordinating an insulin-induced feed-forward response in adipocytes. J Biol Chem 284:12188–12197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cervellati F, Cervellati C, Romani A et al (2014) Hypoxia induces cell damage via oxidative stress in retinal epithelial cells. Free Radic Res 48:303–312

    Article  CAS  PubMed  Google Scholar 

  40. Fang J, Holmgren A (2006) Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. J Am Chem Soc 128:1879–1885

    Article  CAS  PubMed  Google Scholar 

  41. Wang Z, Dou X, Gu D et al (2012) 4-Hydroxynonenal differentially regulates adiponectin gene expression and secretion via activating PPARgamma and accelerating ubiquitin–proteasome degradation. Mol Cell Endocrinol 349:222–231

    Article  CAS  PubMed  Google Scholar 

  42. Balmer ML, Joneli J, Schoepfer A et al (2010) Significance of serum adiponectin levels in patients with chronic liver disease. Clin Sci (Lond) 119:431–436

    Article  CAS  Google Scholar 

  43. Kakisaka Y, Nakashima T, Sumida Y et al (2002) Elevation of serum thioredoxin levels in patients with type 2 diabetes. Horm Metab Res 34:160–164

    Article  CAS  PubMed  Google Scholar 

  44. Hotta K, Funahashi T, Arita Y et al (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20:1595–1599

    Article  CAS  PubMed  Google Scholar 

  45. Basu R, Pajvani UB, Rizza RA et al (2007) Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes 56:2174–2177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31170764), the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (KSCX2-EW-J-29), and Science and Education Integration Project of University of Chinese Academy of Sciences (KJRH2015-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Wei Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

SPECIAL TOPIC: Lipid metabolism and human metabolic disorder

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 207 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JS., Xu, JY., Huang, J. et al. A reciprocal inhibitory relationship between adiponectin and mammalian cytosolic thioredoxin. Sci. Bull. 61, 1513–1521 (2016). https://doi.org/10.1007/s11434-016-1127-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1127-6

Keywords

Navigation