Skip to main content
Log in

In situ carrier tuning in high temperature superconductor \(\hbox {Bi}_2\hbox {Sr}_2\hbox {CaCu}_2\hbox {O}_{8+\varvec{\delta} }\) by potassium deposition

  • Article
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

We report a successful tuning of the hole doping level over a wide range in high temperature superconductor \(\hbox {Bi}_2\hbox {Sr}_2\hbox {CaCu}_2\hbox {O}_{8+\delta }\) (Bi2212) through successive in situ potassium (K) deposition. By taking high resolution angle-resolved photoemission measurements on the Fermi surface and band structure of an overdoped Bi2212 (\(T_\mathrm{c}=76\) K) at different stages of K deposition, we found that the area of the hole-like Fermi surface around the Brillouin zone corner (\(\pi \),\(\pi \)) shrinks with increasing K deposition. This indicates a continuous hole concentration change from initial \(\sim \)0.26 to eventual 0.09 after extensive K deposition, a net doping level change of 0.17 that makes it possible to bring Bi2212 from being originally overdoped, to optimally-doped, and eventually becoming heavily underdoped. The electronic behaviors with K deposition are consistent with those of Bi2212 samples with different hole doping levels. These results demonstrate that K deposition is an effective way of in situ controlling the hole concentration in Bi2212. This work opens a good way of studying the doping evolution of electronic structure and establishing the electronic phase diagram in Bi2212 that can be extended to other cuprate superconductors.

摘要

通过在高温超导体Bi2212样品表面进行原位蒸K, 我们成功地实现了空穴载流子浓度的大范围调节. 通过使用高分辨的ARPES系统对过掺杂Bi2212 (Tc = 76 K) 样品在不同的蒸K阶段的费米面和能带进行研究, 我们发现其围绕布里渊区顶点 (π, π) 的费米面面积会随着K的增加而减小. 随着持续的蒸K过程, 空穴载流子浓度从最初的0.26减小到了最终的0.09, 0.17的载流子浓度变化使得Bi2212样品从最初的过掺杂区域跨越最佳掺杂进入了欠掺杂区域. 而且过掺杂Bi2212蒸K过程中电子结构的性质与通过其他方式得到的不同空穴载流子浓度的Bi2212样品相一致. 结果表明, 原位蒸K的方法是一种有效控制Bi2212中空穴载流子浓度的方法. 这对研究铜基高温超导体的物理性质. 晶格结构以及超导机理是非常重要的, 同时也可以应用到其他铜基高温超导材料中.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bednorz JG, Müller KA (1986) Possible high \(T_{{\rm c}}\) superconductivity in the Ba–La–Cu–O system. Z Phys B 64:189–193

    Article  Google Scholar 

  2. Lee PA, Nagaosa N, Wen XG (2006) Doping a Mott insulator: physics of high-temperature superconductivity. Rev Mod Phys 78:17

    Article  Google Scholar 

  3. Damascelli A, Hussain Z, Shen ZX (2003) Angle-resolved photoemission studies of the cuprate superconductors. Rev Mod Phys 75:473

    Article  Google Scholar 

  4. Campuzano JC, Norman MR, Randeria M (2004) Photoemission in the high-\(T_{{\rm c}}\) superconductors. Phys Supercond (Springer, Berlin) 2:167–273

    Article  Google Scholar 

  5. Zhou XJ, Cuk T, Devereaux T et al (2007) Angle-resolved photoemission spectroscopy on electronic structure and electron-phonon coupling in cuprate superconductors. In: Handbook of high-temperature superconductivity: theory and experiment, vol 3. Springer, New York, pp 87–144

  6. Fischer Ø, Kugler M, Aprile IM et al (2007) Scanning tunneling spectroscopy of high-temperature superconductors. Rev Mod Phys 79:353

    Article  Google Scholar 

  7. Ruan W, Tang PZ, Fang AF et al (2015) Structural phase transition and electronic structure evolution in Ir\(_{1-x}\)Pt\(_{x}\)Te\(_2\) studied by scanning tunneling microscopy. Sci Bull 60:798–805

    Article  Google Scholar 

  8. Shen ZX, Dessau DS, Wells BO et al (1993) Anomalously large gap anisotropy in the \(a-b\) plane of \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\). Phys Rev Lett 70:1553

    Article  Google Scholar 

  9. Ding H, Norman MR, Campuzano JC et al (1996) Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+x}\). Phys Rev B 54:R9678(R)

    Article  Google Scholar 

  10. Loeser AG, Shen ZX, Dessau DS et al (1996) Excitation gap in the normal state of underdoped \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta }\). Science 273:325–329

    Article  Google Scholar 

  11. Ding H, Yokoya T, Campuzano JC et al (1996) Spectroscopic evidence for a pseudogap in the normal state of underdoped high-\(T_{{\rm c}}\) superconductors. Nature 382:51–54

    Article  Google Scholar 

  12. Bogdanov PV, Lanzara A, Kellar SA et al (2000) Evidence for an energy scale for quasiparticle dispersion in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8\). Phys Rev Lett 85:2581

    Article  Google Scholar 

  13. Johnson PD, Valla T, Fedorov AV et al (2001) Doping and temperature dependence of the mass enhancement observed in the cuprate \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\). Phys Rev Lett 87:177007

    Article  Google Scholar 

  14. Kaminski A, Randeria M, Campuzano JC et al (2001) Renormalization of spectral line shape and dispersion below \(T_{{\rm c}}\) in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\). Phys Rev Lett 86:1070

    Article  Google Scholar 

  15. Lanzara A, Bogdanov PV, Zhou XJ et al (2001) Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412:510–514

    Article  Google Scholar 

  16. Zhang WT, Liu GD, Zhao L et al (2008) Identification of a new form of electron coupling in the \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8\) superconductor by laser-based angle-resolved photoemission spectroscopy. Phys Rev Lett 100:107002

    Article  Google Scholar 

  17. Bok JM, Bae JJ, Choi HY et al (2016) Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates. Sci Adv 2:e1501329

    Article  Google Scholar 

  18. Chatterjee U, Ai DF, Zhao JJ et al (2011) Electronic phase diagram of high-temperature copper oxide superconductors. Proc Natl Acad Sci 108:9346–9349

    Article  Google Scholar 

  19. Vishik IM, Hashimoto M, He RH et al (2012) Phase competition in trisected superconducting dome. Proc Natl Acad Sci USA 109:18332–18337

    Article  Google Scholar 

  20. Sun XF, Ono S, Zhao X et al (2008) Doping dependence of phonon and quasiparticle heat transport of pure and Dy-doped \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta }\) single crystals. Phys Rev B 77:094515

    Article  Google Scholar 

  21. Hossain MA, Mottershead JDF, Fournier D et al (2008) In situ doping control of the surface of high-temperature superconductors. Nat Phys 4:527–531

    Article  Google Scholar 

  22. Liu GD, Wang GL, Zhu Y et al (2008) Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev Sci Instrum 79:023105

    Article  Google Scholar 

  23. Wen JS, Xu ZJ, Xu GY et al (2008) Large Bi2212 single crystal growth by the floating-zone technique. J Crystal Growth 310:1401–1404

    Article  Google Scholar 

  24. Aebi P, Osterwalder J, Schwaller P et al (1994) Complete Fermi surface mapping of \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+x}\)(001): Coexistence of short range antiferromagnetic correlations and metallicity in the same phase. Phys Rev Lett 72:2757

    Article  Google Scholar 

  25. Feng DL, Armitage NP, Lu DH et al (2001) Bilayer splitting in the electronic structure of heavily overdoped \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta }\). Phys Rev Lett 86:5550

    Article  Google Scholar 

  26. Bogdanov PV, Lanzara A, Zhou XJ et al (2001) Photoemission study of Pb doped \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8\): a Fermi surface picture. Phys Rev B 64:180505(R)

    Article  Google Scholar 

  27. Saini NL, Avila J, Bianconi A et al (1997) Topology of the pseudogap and shadow bands in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\) at optimum doping. Phys Rev Lett 79:3467

    Article  Google Scholar 

  28. Borisenko SV, Golden MS, Legner S et al (2000) Joys and pitfalls of Fermi surface mapping in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\) using angle resolved photoemission. Phys Rev Lett 84:4453

    Article  Google Scholar 

  29. Markiewicz RS, Sahrakorpi S, Lindroos M et al (2005) One-band tight-binding model parametrization of the high-\(T_{{\rm c}}\) cuprates including the effect of \(k_z\) dispersion. Phys Rev B 72:054519

    Article  Google Scholar 

  30. Zhou XJ, Yoshida T, Lee DH et al (2004) Dichotomy between nodal and antinodal quasiparticles in underdoped \((\text{La}_{2-x}\text{Sr}_x)\text{CuO}_4\) superconductors. Phys Rev Lett 92:187001

    Article  Google Scholar 

  31. Shen KM, Ronning F, Lu DH et al (2005) Nodal quasiparticles and antinodal charge ordering in \(\text{Ca}_{2-x}\text{Na}_x\text{CuO}_2\text{Cl}_2\). Science 307:901–904

    Article  Google Scholar 

  32. Zhou XJ, Yoshida T, Lanzara A et al (2003) High-temperature superconductors: universal nodal Fermi velocity. Nature 423:398

    Article  Google Scholar 

  33. Vishik IM, Nowadnick EA, Lee WS et al (2009) A momentum-dependent perspective on quasiparticle interference in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\). Nat Phys 5:718–721

    Article  Google Scholar 

  34. Feng DL, Lu DH, Shen KM et al (2000) Signature of superfluid density in the single-particle excitation spectrum of \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\). Science 289:277–281

    Article  Google Scholar 

  35. Li ZX, Wang F, Yao H et al (2016) What makes the \(T_{{\rm c}}\) of monolayer FeSe on \(\text{SrTiO}_3\) so high: A sign-problem-free quantum Monte Carlo study. Sci Bull 61:925–930

    Article  Google Scholar 

  36. Hu JP (2016) Identifying the genes of unconventional high temperature superconductors. Sci Bull 61:561–569

    Article  Google Scholar 

Download references

Acknowledgments

XJZ thanks financial support from the National Natural Science foundation of China (11190022,11334010 and 11534007), the National Basic Research Program of China (2015CB921000) and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB07020300).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Zhao or Xingjiang Zhou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hu, C., Hu, Y. et al. In situ carrier tuning in high temperature superconductor \(\hbox {Bi}_2\hbox {Sr}_2\hbox {CaCu}_2\hbox {O}_{8+\varvec{\delta} }\) by potassium deposition. Sci. Bull. 61, 1037–1043 (2016). https://doi.org/10.1007/s11434-016-1106-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1106-y

Keywords

Navigation