Skip to main content
Log in

Transition of primary to secondary cell wall synthesis

  • Review
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

The construction of a secondary cell wall is an important and necessary developmental decision that supports cell function and plant stature. Unlike the primary cell walls, which are initiated during cell division and develop along with the expansion of the cells, secondary cell walls are constructed after the cells have stopped growing. Hence, the transition from primary to secondary wall synthesis marks an important and distinct metabolic investment by the plant. This transition requires a coordinated change of a plethora of cellular processes, including hormonal, transcriptional and post-transcriptional activities, metabolic flux re-distributions and enzymatic activities. In this review, we briefly summarize the hormonal and transcriptional control of the primary to secondary wall transition, and highlight important gaps in our understanding of the metabolic framework that support the transition. Several tools that may aid in future research efforts to better understand the changes in cell wall synthesis during the trans-differentiation are also discussed.

摘要

次生细胞壁的合成是植物的重要发育过程之一, 其不仅是植物细胞实现某 些特定功能所必须的, 同时它也是植物维持其形态的物质基础。与初生细 胞壁不同的是次生壁的合成开始于细胞停止生长后, 而初生壁的合成则是 伴随细胞生长同时进行的。因此, 由初生壁合成到次生壁合成的转化意味 着植物体内需要进行一次重要的代谢调整。两种细胞壁合成的转化需要一 系列胞内生理生化活动的协同合作。这些活动包括: 激素调控, 转录调控, 转录后调控以及代谢通量的重分布等。本文概述了初生壁合成到次生壁合 成转化所涉及到的转录和激素调控, 并且指出了我们对相关代谢网络认知 的不足。此外, 本文还对现有的可用于研究该转化的工具系统进行了讨论。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Smith LG (2001) Plant cell division: building walls in the right places. Nat Rev Mol Cell Biol 2:33–39

    Article  Google Scholar 

  2. De Smet I, Beeckman T (2011) Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat Rev Mol Cell Biol 12:177–188

    Article  Google Scholar 

  3. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  Google Scholar 

  4. Schuetz M, Smith R, Ellis B (2013) Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot 64:11–31

    Article  Google Scholar 

  5. Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    Article  Google Scholar 

  6. Kumar M, Campbell L, Turner S (2015) Secondary cell walls: biosynthesis and manipulation. J Exp Bot 67:515–531

    Article  Google Scholar 

  7. Zhong R, Ye ZH (2015) Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol 56:195–214

    Article  Google Scholar 

  8. Doblin MS, Pettolino F, Bacic A (2010) Plant cell walls: the skeleton of the plant world. Funct Plant Biol 37:357–381

    Article  Google Scholar 

  9. Vanholme R, Morreel K, Ralph J et al (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    Article  Google Scholar 

  10. McFarlane HE, Döring A, Persson S (2014) The cell biology of cellulose synthesis. Annu Rev Plant Biol 65:69–94

    Article  Google Scholar 

  11. Wang HZ, Dixon RA (2012) On-off switches for secondary cell wall biosynthesis. Mol Plant 5:297–303

    Article  Google Scholar 

  12. Bishopp A, Mähönen AP, Helariutta Y (2006) Signs of change: hormone receptors that regulate plant development. Development 133:1857–1869

    Article  Google Scholar 

  13. Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373

    Article  Google Scholar 

  14. Davies PJ (2010) The plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action!. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  15. Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433

    Article  Google Scholar 

  16. Didi V, Jackson P, Hejátko J (2015) Hormonal regulation of secondary cell wall formation. J Exp Bot 66:5015–5027

    Article  Google Scholar 

  17. Demura T (2014) Tracheary element differentiation. Plant Biotechnol Rep 8:17–21

    Article  Google Scholar 

  18. Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391

    Article  Google Scholar 

  19. Yamamoto R, Demura T, Fukuda H (1997) Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol 38:980–983

    Article  Google Scholar 

  20. Fukuda H, Komamine A (1980) Direct evidence for cytodifferentiation to tracheary elements without intervening mitosis in a culture of single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:61–64

    Article  Google Scholar 

  21. Fukuda H, Komamine A (1980) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60

    Article  Google Scholar 

  22. Demura T, Tashiro G, Horiguchi G et al (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA 99:15794–15799

    Article  Google Scholar 

  23. Pesquet E, Korolev AV, Calder G et al (2010) The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr Biol 20:744–749

    Article  Google Scholar 

  24. Derbyshire P, Ménard D, Green P et al (2015) Proteomic analysis of microtubule interacting proteins over the course of xylem tracheary element formation in Arabidopsis. Plant Cell 27:2709–2726

    Google Scholar 

  25. Kubo M, Udagawa M, Nishikubo N et al (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860

    Article  Google Scholar 

  26. Jensen MK, Kjaersgaard T, Nielsen MM et al (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426:183–196

    Article  Google Scholar 

  27. Soyano T, Thitamadee S, Machida Y et al (2008) ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN-DOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis. Plant Cell 20:3359–3373

    Article  Google Scholar 

  28. Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11:252–257

    Article  Google Scholar 

  29. Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4:199–211

    Article  Google Scholar 

  30. Watanabe Y, Meents MJ, McDonnell LM et al (2015) Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science 350:198–203

    Article  Google Scholar 

  31. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  Google Scholar 

  32. Sampathkumar A, Gutierrez R, McFarlane HE et al (2013) Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162:675–688

    Article  Google Scholar 

  33. Li S, Lei L, Somerville CR et al (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA 109:185–190

    Article  Google Scholar 

  34. Mei Y, Gao HB, Yuan M et al (2012) The Arabidopsis ARCP protein, CSI1, which Is required for microtubule stability, is necessary for root and anther development. Plant Cell 24:1066–1080

    Article  Google Scholar 

  35. Bringmann M, Li E, Sampathkumar A et al (2012) POM-POM2/cellulose synthase interacting1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24:163–177

    Article  Google Scholar 

  36. Sedbrook JC, Kaloriti D (2008) Microtubules, MAPs and plant directional cell expansion. Trends Plant Sci 13:303–310

    Article  Google Scholar 

  37. Oda Y, Fukuda H (2012) Secondary cell wall patterning during xylem differentiation. Curr Opin Plant Biol 15:38–44

    Article  Google Scholar 

  38. Crowell EF, Bischoff V, Desprez T et al (2009) Pausing of golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154

    Article  Google Scholar 

  39. Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137:1027–1036

    Article  Google Scholar 

  40. Bouquin T, Mattsson O, Næsted H et al (2003) The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci 116:791–801

    Article  Google Scholar 

  41. Catterou M, Dubois F, Schaller H et al (2001) Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I. Molecular, cellular and physiological characterization of the Arabidopsis bul1 mutant, defective in the \(\Delta^7\)-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Planta 212:659–672

    Article  Google Scholar 

  42. Xu T, Wen M, Nagawa S et al (2010) Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110

    Article  Google Scholar 

  43. Blancaflor EB, Hasenstein KH (1993) Organization of cortical microtubules in graviresponding maize roots. Planta 191:231–237

    Google Scholar 

  44. Blancaflor EB, Hasenstein KH (1995) Time-course and auxin sensitivity of cortical microtubule reorientation in maize roots. Protoplasma 185:72–82

    Article  Google Scholar 

  45. Takesue K, Shibaoka H (1998) The cyclic reorientation of cortical microtubules in epidermal cells of azuki bean epicotyls: the role of actin filaments in the progression of the cycle. Planta 205:539–546

    Article  Google Scholar 

  46. Takesue K, Shibaoka H (1999) Auxin-induced longitudinal-to-transverse reorientation of cortical microtubules in nonelongating epidermal cells of azuki bean epicotyls. Protoplasma 206:27–30

    Article  Google Scholar 

  47. Baluška F, Barlow PW, Volkmann D (1996) Complete disintegration of the microtubular cytoskeleton precedes its auxin-mediated reconstruction in postmitotic maize root cells. Plant Cell Physiol 37:1013–1021

    Article  Google Scholar 

  48. Chen X, Grandont L, Li H et al (2014) Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules. Nature 516:90–93

    Article  Google Scholar 

  49. Gao Y, Zhang Y, Zhang D et al (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112:2275–2280

    Article  Google Scholar 

  50. Dai X, Zhang Y, Zhang D et al (2015) Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. Nat Plants 1:15183

    Article  Google Scholar 

  51. Schopfer P, Palme K (2016) Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules? A critical comment. Plant Physiol 170:23–25

    Article  Google Scholar 

  52. Endler A, Kesten C, Schneider R et al (2015) A mechanism for sustained cellulose synthesis during salt stress. Cell 162:1353–1364

    Article  Google Scholar 

  53. Taylor-Teeples M, Lin L, de Lucas M et al (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571–575

    Article  Google Scholar 

  54. Zhong R, Ye Z-H (2014) Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci 229:193–207

    Article  Google Scholar 

  55. Nakano Y, Yamaguchiz M, Endo H et al (2015) NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front Plant Sci 6:288

  56. Zhong R, Ye Z-H (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    Article  Google Scholar 

  57. Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci 12:64–70

    Article  Google Scholar 

  58. Hussey SG, Mizrachi E, Creux NM et al (2013) Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. Front Plant Sci 4:325

    Article  Google Scholar 

  59. Yamaguchi M, Kubo M, Fukuda H et al (2008) VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664

    Article  Google Scholar 

  60. Yamaguchi M, Mitsuda N, Ohtani M et al (2011) VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J 66:579–590

    Article  Google Scholar 

  61. Zhou J, Zhong R, Ye Z-H (2014) Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PLoS ONE 9:e105726

    Article  Google Scholar 

  62. Mitsuda N, Seki M, Shinozaki K et al (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  Google Scholar 

  63. Zhong R, Demura T, Ye Z-H (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    Article  Google Scholar 

  64. Mitsuda N, Iwase A, Yamamoto H et al (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    Article  Google Scholar 

  65. Wang H, Zhao Q, Chen F et al (2011) NAC domain function and transcriptional control of a secondary cell wall master switch. Plant J 68:1104–1114

    Article  Google Scholar 

  66. Yamaguchi M, Ohtani M, Mitsuda N et al (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22:1249–1263

    Article  Google Scholar 

  67. Wang H, Avci U, Nakashima J et al (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci USA 107:22338–22343

    Article  Google Scholar 

  68. Amor Y, Haigler CH, Johnson S et al (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357

    Article  Google Scholar 

  69. Ruan Y-L, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    Article  Google Scholar 

  70. Reiter W-D (2008) Biochemical genetics of nucleotide sugar interconversion reactions. Curr Opin Plant Biol 11:236–243

    Article  Google Scholar 

  71. Hao Z, Mohnen D (2014) A review of xylan and lignin biosynthesis: foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol 49:212–241

    Article  Google Scholar 

  72. Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779

    Article  Google Scholar 

  73. Pattathil S, Harper AD, Bar-Peled M (2005) Biosynthesis of UDP-xylose: characterization of membrane-bound At Uxs2. Planta 221:538–548

    Article  Google Scholar 

  74. Litterer LA, Schnurr JA, Plaisance KL et al (2006) Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol Biochem 44:171–180

    Article  Google Scholar 

  75. Geigenberger P, Fernie AR, Gibon Y et al (2000) Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biol Chem 381:723–740

    Article  Google Scholar 

  76. Geigenberger P, Regierer B, Nunes-Nesi A et al (2005) Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell 17:2077–2088

    Article  Google Scholar 

  77. Fernie AR, Roessner U, Trethewey RN et al (2001) The contribution of plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber. Planta 213:418–426

    Article  Google Scholar 

  78. Oliver SN, Lunn JE, Urbanczyk-Wochniak E et al (2008) Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase. Plant Physiol 148:1640–1654

    Article  Google Scholar 

  79. Carrari F, Baxter C, Usadel B et al (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142:1380–1396

    Article  Google Scholar 

  80. Voxeur A, Wang Y, Sibout R (2015) Lignification: different mechanisms for a versatile polymer. Curr Opin Plant Biol 23:83–90

    Article  Google Scholar 

  81. Barros J, Serk H, Granlund I et al (2015) The cell biology of lignification in higher plants. Ann Bot 115:1053–1074

    Article  Google Scholar 

  82. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  Google Scholar 

  83. Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233

    Article  Google Scholar 

  84. Besseau S, Hoffmann L, Geoffroy P et al (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  Google Scholar 

  85. Coleman HD, Park JY, Nair R et al (2008) RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci USA 105:4501–4506

    Article  Google Scholar 

  86. Vanholme R, Storme V, Vanholme B et al (2012) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24:3506–3529

    Article  Google Scholar 

  87. Gallego-Giraldo L, Jikumaru Y, Kamiya Y et al (2011) Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytol 190:627–639

    Article  Google Scholar 

  88. Meyermans H, Morreel K, Lapierre C et al (2000) Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275:36899–36909

    Article  Google Scholar 

  89. Chen F, Duran AL, Blount JW et al (2003) Profiling phenolic metabolites in transgenic alfalfa modified in lignin biosynthesis. Phytochemistry 64:1013–1021

    Article  Google Scholar 

  90. Lanot A, Hodge D, Lim EK et al (2008) Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates. Planta 228:609–616

    Article  Google Scholar 

  91. Quentin M, Allasia V, Pegard A et al (2009) Imbalanced lignin biosynthesis promotes the sexual reproduction of homothallic oomycete pathogens. PLoS Pathog 5:e1000264

    Article  Google Scholar 

  92. Goujon T, Sibout R, Pollet B et al (2003) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989

    Article  Google Scholar 

  93. Fornalé S, Shi X, Chai C et al (2010) ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J 64:633–644

    Article  Google Scholar 

  94. Sonbol F-M, Fornalé S, Capellades M et al (2009) The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Mol Biol 70:283–296

    Article  Google Scholar 

  95. Van Acker R, Vanholme R, Storme V et al (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels 6:46

    Article  Google Scholar 

  96. Van Acker R, Leple J-C, Aerts D et al (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci USA 111:845–850

    Article  Google Scholar 

  97. Meyer RC, Steinfath M, Lisec J et al (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:4759–4764

    Article  Google Scholar 

  98. Sulpice R, Pyl E-T, Ishihara H et al (2009) Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA 106:10348–10353

    Article  Google Scholar 

  99. Smeekens S, Ma J, Hanson J et al (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279

    Article  Google Scholar 

  100. Schluepmann H, Berke L, Sanchez-Perez GF (2012) Metabolism control over growth: a case for trehalose-6-phosphate in plants. J Exp Bot 63:3379–3390

    Article  Google Scholar 

  101. O’Hara LE, Paul MJ, Wingler A (2013) How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol Plant 6:261–274

    Article  Google Scholar 

  102. van der Merwe MJ, Osorio S, Araujo WL et al (2010) Tricarboxylic acid cycle activity regulates tomato root growth via effects on secondary cell wall production. Plant Physiol 153:611–621

    Article  Google Scholar 

  103. Gou J-Y, Wang L-J, Chen S-P et al (2007) Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res 17:422–434

    Google Scholar 

  104. Martin LK, Haigler CH (2004) Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers. Cellulose 11:339–349

    Article  Google Scholar 

  105. Babb VM, Haigler CH (2001) Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems. Plant Physiol 127:1234–1242

    Article  Google Scholar 

  106. Tuttle JR, Nah G, Duke MV et al (2015) Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics 16

  107. Mellerowicz EJ, Baucher M, Sundberg B et al (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    Article  Google Scholar 

  108. Uggla C, Moritz T, Sandberg G et al (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    Article  Google Scholar 

  109. Schrader J, Nilsson J, Mellerowicz E et al (2004) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16:2278–2292

    Article  Google Scholar 

  110. Gorzsás A, Stenlund H, Persson P et al (2011) Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. Plant J 66:903–914

    Article  Google Scholar 

  111. Milioni D, Sado PE, Stacey NJ et al (2002) Early gene expression associated with the commitment and differentiation of a plant tracheary element is revealed by cDNA-amplified fragment length polymorphism analysis. Plant Cell 14:2813–2824

    Article  Google Scholar 

  112. Pesquet E, Ranocha P, Legay S et al (2005) Novel markers of xylogenesis in zinnia are differentially regulated by auxin and cytokinin. Plant Physiol 139:1821–1839

    Article  Google Scholar 

  113. Yamaguchi M, Goue N, Igarashi H et al (2010) VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol 153:906–914

    Article  Google Scholar 

  114. Haigler CH, Betancur L, Stiff MR et al (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104

    Article  Google Scholar 

  115. Abidi N, Hequet E, Cabrales L (2010) Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose 17:153–160

    Article  Google Scholar 

  116. Singh B, Avci U, Inwood SEE et al (2009) A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol 150:684–699

    Article  Google Scholar 

  117. Goswami L, Eder M, Gierlinger N et al (2008) Inducing large deformation in wood cell walls by enzymatic modification. J Mater Sci 43:1286–1291

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Wei Zeng for useful comments on the manuscript. ZL is a recipient of MIFRS and MIRS scholarships from University of Melbourne. SP was funded by a R@MAP Professorship at University of Melbourne. We also gratefully acknowledge a grant from the European Commission’s Directorate General for Research within the 7th Framework Program (FP7/2007–2013) under Grant Agreement 270089 (MULTIBIOPRO to ARF and SP).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staffan Persson.

Additional information

SPECIAL TOPIC: Plant Development and Reproduction.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Fernie, A.R. & Persson, S. Transition of primary to secondary cell wall synthesis. Sci. Bull. 61, 838–846 (2016). https://doi.org/10.1007/s11434-016-1061-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1061-7

Keywords

Navigation