Skip to main content
Log in

Brown adipose tissue and its therapeutic application

  • Review
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

In addition to white adipose tissue (WAT) that stores energy, human and small mammals also have brown adipose tissue (BAT) that dissipates chemical energy for thermogenesis. BAT contains multilocular lipid droplets and much higher numbers of mitochondria than WAT. The mitochondria in BAT uncouple large amounts of fuel oxidation from ATP for heat generation. Accumulating evidences have demonstrated that increased activity and/or amount of BAT can reverse obesity and improve insulin resistance, which highlights that BAT plays an important role in energy metabolism. In this review, we summarized recent findings that shows advantageous effects of BAT activation in metabolic diseases. In addition, we presented the function and role of brown and beige fat cells and regulatory factors for them. Finally, we discussed the potential application of brown adipocytes-based therapy and pharmacological intervention to increase BAT activity for the treatment of obesity and related diseases including insulin resistance, cardiovascular diseases and type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haslam DW, James WPT (2005) Obesity. Lancet 366:1197–1209

    Article  PubMed  Google Scholar 

  2. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452

    Article  CAS  PubMed  Google Scholar 

  3. Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  PubMed  Google Scholar 

  5. Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  CAS  PubMed  Google Scholar 

  6. Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walhin JP, Richardson JD, Betts JA et al (2013) Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol 591:6231–6243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19:1252–1263

    Article  CAS  PubMed  Google Scholar 

  9. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  PubMed  Google Scholar 

  10. Loncar D, Bedrica L, Mayer J et al (1986) The effect of intermittent cold treatment on the adipose tissue of the cat. Apparent transformation from white to brown adipose tissue. J Ultrastruct Mol Struct Res 97:119–129

    Article  CAS  PubMed  Google Scholar 

  11. Ouellet V, Labbe SM, Blondin DP et al (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552

    Article  PubMed  PubMed Central  Google Scholar 

  12. Matsushita M, Yoneshiro T, Aita S et al (2014) Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes (Lond) 38:812–817

    Article  CAS  Google Scholar 

  13. Wu J, Bostrom P, Sparks LM et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tseng YH, Cypess AM, Kahn CR (2010) Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov 9:465–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Marken Lichtenbelt WD, Schrauwen P (2011) Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol 301:R285–R296

    Article  PubMed  Google Scholar 

  16. Carey AL, Kingwell BA (2013) Brown adipose tissue in humans: therapeutic potential to combat obesity. Pharmacol Ther 140:26–33

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Paul C, Spiegelman BM (2013) Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 27:234–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bonet ML, Oliver P, Palou A (2013) Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta 1831:969–985

    Article  CAS  PubMed  Google Scholar 

  19. Mottillo EP, Balasubramanian P, Lee YH et al (2014) Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res 55:2276–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartelt A, Bruns OT, Reimer R et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205

    Article  CAS  PubMed  Google Scholar 

  21. Van der Lans AA, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123:3395–3403

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bakker LE, Boon MR, van der Linden RA et al (2014) Brown adipose tissue volume in healthy lean south Asian adults compared with white Caucasians: a prospective, case-controlled observational study. Lancet Diabetes Endocrinol 2:210–217

    Article  PubMed  Google Scholar 

  23. Geerling JJ, Boon MR, van der Zon GC et al (2014) Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 63:880–891

    Article  CAS  PubMed  Google Scholar 

  24. Yoneshiro T, Aita S, Matsushita M et al (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123:3404–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bartelt A, Heeren J (2012) The holy grail of metabolic disease: brown adipose tissue. Curr Opin Lipidol 23:190–195

    Article  CAS  PubMed  Google Scholar 

  26. Orava J, Nuutila P, Lidell ME et al (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14:272–279

    Article  CAS  PubMed  Google Scholar 

  27. Peirce V, Vidal-Puig A (2013) Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol 1:353–360

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Wang S, You Y et al (2015) Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology 156:2461–2469

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Zheng Z, Zhu X et al (2013) Brown adipose tissue transplantation improves whole-body energy metabolism. Cell Res 23:851–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stanford KI, Middelbeek RJ, Townsend KL et al (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123:215–223

    Article  CAS  PubMed  Google Scholar 

  31. Wang ZH, Li YF, Guo YQ (2013) β3-Adrenoceptor activation attenuates atherosclerotic plaque formation in ApoE(−/−) mice through lowering blood lipids and glucose. Acta Pharmacol Sin 34:1156–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cypess AM, Weiner LS, Roberts Toler C et al (2015) Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab 21:33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blondin DP, Labbe SM, Tingelstad HC et al (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 99:E438–E446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee P, Smith S, Linderman J et al (2014) Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63:3686–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chondronikola M, Volpi E, Borsheim E et al (2014) Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63:4089–4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Young JB, Saville E, Rothwell NJ et al (1982) Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. J Clin Invest 69:1061–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murano I, Barbatelli G, Giordano A et al (2009) Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat 214:171–178

    Article  CAS  PubMed  Google Scholar 

  38. Giordano A, Frontini A, Murano I et al (2005) Regional-dependent increase of sympathetic innervation in rat white adipose tissue during prolonged fasting. J Histochem Cytochem 53:679–687

    Article  CAS  PubMed  Google Scholar 

  39. Collins S (2011) β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol (Lausanne) 2:102

    Google Scholar 

  40. Nguyen KD, Qiu Y, Cui X et al (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qiu Y, Nguyen KD, Odegaard JI et al (2014) Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157:1292–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Matteis R, Lucertini F, Guescini M et al (2013) Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis 23:582–590

    Article  PubMed  Google Scholar 

  43. Hatano D, Ogasawara J, Endoh S et al (2011) Effect of exercise training on the density of endothelial cells in the white adipose tissue of rats. Scand J Med Sci Sports 21:e115–e121

    Article  CAS  PubMed  Google Scholar 

  44. Slocum N, Durrant JR, Bailey D et al (2013) Responses of brown adipose tissue to diet-induced obesity, exercise, dietary restriction and ephedrine treatment. Exp Toxicol Pathol 65:549–557

    Article  CAS  PubMed  Google Scholar 

  45. Norheim F, Langleite TM, Hjorth M et al (2014) The effects of acute and chronic exercise on PGC-1alpha, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281:739–749

    Article  CAS  PubMed  Google Scholar 

  46. Vosselman MJ, Hoeks J, Brans B et al (2015) Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int J Obes (Lond) 39:1696–1702

  47. Yoneshiro T, Aita S, Kawai Y et al (2012) Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr 95:845–850

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Z, Zhang H, Li B et al (2014) Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 5:5493

    Article  ADS  CAS  PubMed  Google Scholar 

  49. You Y, Yuan X, Lee HJ et al (2015) Mulberry and mulberry wine extract increase the number of mitochondria during brown adipogenesis. Food Funct 6:401–408

    Article  CAS  PubMed  Google Scholar 

  50. Yorsin S, Kanokwiroon K, Radenahmad N et al (2014) Effects of Kaempferia parviflora rhizomes dichloromethane extract on vascular functions in middle-aged male rat. J Ethnopharmacol 156:162–174

    Article  PubMed  Google Scholar 

  51. Coskun T, Bina HA, Schneider MA et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027

    Article  CAS  PubMed  Google Scholar 

  52. Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee P, Linderman JD, Smith S et al (2014) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19:302–309

    Article  CAS  PubMed  Google Scholar 

  54. Lee P, Brychta RJ, Linderman J et al (2013) Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J Clin Endocrinol Metab 98:E98–E102

    Article  CAS  PubMed  Google Scholar 

  55. Bookout AL, de Groot MH, Owen BM et al (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19:1147–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fisher FM, Kleiner S, Douris N et al (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gaich G, Chien JY, Fu H et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–340

    Article  CAS  PubMed  Google Scholar 

  58. Modica S, Wolfrum C (2013) Bone morphogenic proteins signaling in adipogenesis and energy homeostasis. Biochim Biophys Acta 1831:915–923

    Article  CAS  PubMed  Google Scholar 

  59. Whittle AJ, Carobbio S, Martins L et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149:871–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Elsen M, Raschke S, Tennagels N et al (2014) BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. Am J Physiol Cell Physiol 306:C431–C440

    Article  CAS  PubMed  Google Scholar 

  61. Hinoi E, Nakamura Y, Takada S et al (2014) Growth differentiation factor-5 promotes brown adipogenesis in systemic energy expenditure. Diabetes 63:162–175

    Article  CAS  PubMed  Google Scholar 

  62. Suarez J, Rivera P, Arrabal S et al (2014) Oleoylethanolamide enhances beta-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat. Dis Model Mech 7:129–141

    Article  CAS  PubMed  Google Scholar 

  63. Wargent ET, O’Dowd JF, Zaibi MS et al (2013) Contrasts between the effects of zinc-alpha2-glycoprotein, a putative beta3/2-adrenoceptor agonist and the β3/2-adrenoceptor agonist BRL35135 in C57Bl/6 (ob/ob) mice. J Endocrinol 216:157–168

    Article  CAS  PubMed  Google Scholar 

  64. Cypess AM, Weiner LS, Roberts-Toler C et al (2015) Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21:33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van Baak MA, Hul GB, Toubro S et al (2002) Acute effect of L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure in obese men. Clin Pharmacol Ther 71:272–279

    Article  PubMed  Google Scholar 

  66. Redman LM, de Jonge L, Fang X et al (2007) Lack of an effect of a novel beta3-adrenoceptor agonist, TAK-677, on energy metabolism in obese individuals: a double-blind, placebo-controlled randomized study. J Clin Endocrinol Metab 92:527–531

    Article  CAS  PubMed  Google Scholar 

  67. Rao RR, Long JZ, White JP et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roberts LD, Boström P, O’Sullivan JF et al (2014) β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19:96–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bordicchia M, Liu D, Amri EZ et al (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 122:1022–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vegiopoulos A, Muller-Decker K, Strzoda D et al (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328:1158–1161

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Watanabe M, Houten SM, Mataki C et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Fang S, Suh JM, Reilly SM et al (2015) Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 21:159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Broeders EP, Nascimento EB, Havekes B et al (2015) The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab 22:418–426

    Article  CAS  PubMed  Google Scholar 

  74. Lockie SH, Heppner KM, Chaudhary N et al (2012) Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes 61:2753–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lopez M, Dieguez C, Nogueiras R (2015) Hypothalamic GLP-1: the control of BAT thermogenesis and browning of white fat. Adipocyte 4:141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beiroa D, Imbernon M, Gallego R et al (2014) GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63:3346–3358

    Article  CAS  PubMed  Google Scholar 

  77. Mori M, Nakagami H, Rodriguez-Araujo G et al (2012) Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol 10:e1001314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hou T, Ou J, Zhao X et al (2014) MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. Br J Cancer 110:1260–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu XH, Lu KH, Wang KM et al (2012) MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5. BMC Cancer 12:348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schimanski CC, Frerichs K, Rahman F et al (2009) High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol 15:2089–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang G, Han D, Chen X et al (2014) MiR-196a exerts its oncogenic effect in glioblastoma multiforme by inhibition of IκBα both in vitro and in vivo. Neuro Oncol 16:652–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Karbiener M, Pisani DF, Frontini A et al (2014) MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells 32:1578–1590

    Article  CAS  PubMed  Google Scholar 

  83. Trajkovski M, Ahmed K, Esau CC et al (2012) MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol 14:1330–1335

    Article  CAS  PubMed  Google Scholar 

  84. Liu W, Bi P, Shan T et al (2013) miR-133a regulates adipocyte browning in vivo. PLoS Genet 9:e1003626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu Y, Zuo JR, Zhang YC et al (2013) Identification of miR-106b-93 as a negative regulator of brown adipocyte differentiation. Biochem Biophys Res Commun 438:575–580

    Article  CAS  PubMed  Google Scholar 

  86. Chen Y, Siegel F, Kipschull S et al (2013) miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun 4:1769

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  87. Zhao XY, Li S, Wang GX et al (2014) A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol Cell 55:372–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alvarez-Dominguez JR, Bai Z, Xu D et al (2015) De novo reconstruction of adipose tissue transcriptomes reveals long non-coding RNA regulators of brown adipocyte development. Cell Metab 21:764–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gunawardana SC, Piston DW (2012) Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 61:674–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stanford KI, Middelbeek RJW, Townsend KL et al (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123:215–223

    Article  CAS  PubMed  Google Scholar 

  91. Cypess AM, White AP, Vernochet C et al (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19:635–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xue R, Lynes MD, Dreyfuss JM et al (2015) Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat Med 21:760–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuek Jong Lee.

Additional information

SPECIAL TOPIC: Lipid Metabolism and Human Metabolic Disorder

Xiaoxue Yuan and Meng Dong contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Dong, M., Lee, H.J. et al. Brown adipose tissue and its therapeutic application. Sci. Bull. 61, 1498–1503 (2016). https://doi.org/10.1007/s11434-016-1051-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1051-9

Keywords

Navigation