Skip to main content
Log in

Reconstruction of solid oxide fuel cell electrode microstructure and analysis of its effective conductivity

关于固体氧化物燃料电池的电极的微观结构重构及有效电导率计算

  • Article
  • Engineering Sciences
  • Published:
Science Bulletin

Abstract

The effective conductivity (σ eff) of solid oxide fuel cell (SOFC) electrode is an important parameter for predicting the ohmic loss in SOFC. This paper investigates the effective conductivity of SOFC electrodes reconstructed numerically by packing spherical particles in a computational domain, followed by a dilation process to simulate the sintering procedure. The effects of various parameters on the effective conductivity of the electrodes are investigated, including material composition, porosity, particle size and contact angle. Results show that the effective conductivity ratio (σ eff/σ 0) of the computed conducting phase is mainly affected by its total volume fraction (VF) in electrode (including the porosity). The effective conductivity can be improved by increasing the VF, electrode particle size or the contact angle between electrode particles. Based on the numerical results, the conventional percolation model for the calculation of σ eff is improved by adjusting the Bruggeman factor from 1.5 to 2.7. The results are useful for understanding the microstructure properties of SOFC composite electrode and for subsequent electrode optimization.

摘要

电极有效电导率是预测固体氧化物燃料电池(SOFC)电极内欧姆损失的一个重要参数。本文采用数值计算的方法研究了SOFC电极内的有效电导率。SOFC多孔电极采用随机球堆积程序构建,电极烧结过程采用电极颗粒原位膨胀的方法模拟。基于所构建的电极,本文研究了不同电极材料组分,孔隙率,颗粒大小以及接触角对电极有效电导率的影响。结果表明:电极内传导相的有效电导率比值(σ eff/σ 0)主要由该相在电极内的体积分数(VF)决定。VF值越大,σ eff/σ 0值越高。此外,增加电极颗粒尺寸以及电极颗粒间的接触角也有利于电极有效电导率的提高。最后,通过将计算结果与传统渗流模型对比发现,传统渗流模型高估了电极的有效电导率。将传统渗流模型中的Bruggeman factor从1.5 调整至2.7可以提高该模型预测的准确度。本文的工作有助于理解SOFC复合电极微结构与电极有效性质之间的关系,并为电极优化提供理论依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939

    Article  Google Scholar 

  2. Andersson M, Yuan J, Sundén B (2012) SOFC modeling considering electrochemical reactions at the active three phase boundaries. Int J Heat Mass Transf 55:773–788

    Article  Google Scholar 

  3. Zheng K, Li L, Ni M (2014) Investigation of the electrochemical active thickness of solid oxide fuel cell anode. Int J Hydrogen Energ 39:12904–12912

    Article  Google Scholar 

  4. Vivet N, Chupin S, Estrade E et al (2011) Effect of Ni content in SOFC Ni–YSZ cermets: a three-dimensional study by FIB-SEM tomography. J Power Sources 196:9989–9997

    Article  Google Scholar 

  5. Iwai H, Shikazono N, Matsui T et al (2010) Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique. J Power Sources 195:955–961

    Article  Google Scholar 

  6. Vivet N, Chupin S, Estrade E et al (2011) 3D Microstructural characterization of a solid oxide fuel cell anode reconstructed by focused ion beam tomography. J Power Sources 196:7541–7549

    Article  Google Scholar 

  7. Rhazaoui K, Cai Q, Kishimoto M et al (2015) Towards the 3D modelling of the effective conductivity of solid oxide fuel cell electrodes—validation against experimental measurements and prediction of electrochemical performance. Electrochim Acta 168:139–147

    Article  Google Scholar 

  8. Choi HW, Berson A, Pharoah JG et al (2011) Effective transport properties of the porous electrodes in solid oxide fuel cells. Proc Inst Mech Eng A J Power Energy 225:183–197

    Article  Google Scholar 

  9. Sanyal J, Goldin GM, Zhu H et al (2010) A particle-based model for predicting the effective conductivities of composite electrodes. J Power Sources 195:6671–6679

    Article  Google Scholar 

  10. Chen D, Lin Z, Zhu H et al (2009) Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes. J Power Sources 191:240–252

    Article  Google Scholar 

  11. Suzuki M, Oshima T (1983) Estimation of the co-ordination number in a multi-component mixture of spheres. Powder Technol 35:159–166

    Article  Google Scholar 

  12. Bouvard D, Lange FF (1991) Relation between percolation and particle coordination in binary powder mixtures. Acta Metall Mater 39:3083–3090

    Article  Google Scholar 

  13. Chen D, Lu L, Li J et al (2011) Percolation micro-model to predict the effective properties of the composite electrode with poly-dispersed particle sizes. J Power Sources 196:3178–3185

    Article  Google Scholar 

  14. Bertei A, Nicolella C (2011) Percolation theory in SOFC composite electrodes: effects of porosity and particle size distribution on effective properties. J Power Sources 196:9429–9436

    Article  Google Scholar 

  15. Bertei A, Nicolella C (2011) A comparative study and an extended theory of percolation for random packings of rigid spheres. Powder Technol 213:100–108

    Article  Google Scholar 

  16. Bertei A, Choi HW, Pharoah JG (2012) Percolating behavior of sintered random packings of spheres. Powder Technol 231:44–53

    Article  Google Scholar 

  17. Rhazaoui K, Cai Q, Adjiman CS et al (2013) Towards the 3D modeling of the effective conductivity of solid oxide fuel cell electrodes: I. model development. Chem Eng Sci 99:161–170

    Article  Google Scholar 

  18. Rhazaoui K, Cai Q, Adjiman CS et al (2014) Towards the 3D modeling of the effective conductivity of solid oxide fuel cell electrodes—II. Computational parameters. Chem Eng Sci 116:781–792

    Article  Google Scholar 

  19. Bertei A, Nucci B, Nicolella C (2013) Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes. Chem Eng Sci 101:175–190

    Article  Google Scholar 

  20. Kenney B, Valdmanis M, Baker C et al (2009) Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes. J Power Sources 189:1051–1059

    Article  Google Scholar 

  21. Zhang Y, Xia C, Ni M (2012) Simulation of sintering kinetics and microstructure evolution of composite solid oxide fuel cells electrodes. Int J Hydrog Energy 37:3392–3402

    Article  Google Scholar 

  22. Nam JH, Jeon DH (2006) A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochim Acta 51:3446–3460

    Article  Google Scholar 

  23. Zheng K, Zhang Y, Li L et al (2015) On the tortuosity factor of solid phase in solid oxide fuel cell electrodes. Int J Hydrog Energy 40:665–669

    Article  Google Scholar 

  24. Yamahara K, Sholklapper TZ, Jacobson CP et al (2005) Ionic conductivity of stabilized zirconia networks in composite SOFC electrodes. Solid State Ion 176:1359–1364

    Article  Google Scholar 

  25. Zhang Y, Ni M, Xia C et al (2014) A sintering kinetics model for ceramic dual-phase composite. J Am Ceram 97:2580–2589

    Article  Google Scholar 

  26. Cai Q, Adjiman CS, Brandon NP (2011) Modelling the 3D microstructure and performance of solid oxide fuel cell electrodes: computational parameters. Electrochim Acta 56:5804–5814

    Article  Google Scholar 

  27. Zhang Y, Xia C (2011) Film percolation for composite electrodes of solid oxide fuel cells. Electrochim Acta 56:4763–4769

    Article  Google Scholar 

  28. Zhao F, Virkar AV (2005) Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J Power Sources 141:79–95

    Article  Google Scholar 

  29. Yu JH, Park GW, Lee S et al (2007) Microstructural effects on the electrical and mechanical properties of Ni–YSZ cermet for SOFC anode. J Power Sources 163:926–932

    Article  Google Scholar 

  30. Zhang Y, Sun Q, Xia C et al (2013) Geometric properties of nanostructured solid oxide fuel cell electrodes. J Electrochem Soc 160:F278–F289

    Article  Google Scholar 

  31. Zhang Y, Xia C, Chen F (2014) Tortuosity factor of three-dimensional infiltrate network. J Power Sources 269:189–193

    Article  Google Scholar 

  32. Jiang SP (2006) A review of wet impregnation—an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Mater Sci Eng A 418:199–210

    Article  Google Scholar 

  33. Jiang SP (2012) Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int J Hydrogen Energy 37:449–470

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Research Grant Council, University Grants Committee, Hong Kong SAR (PolyU 152127/14E).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Ni.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Ni, M. Reconstruction of solid oxide fuel cell electrode microstructure and analysis of its effective conductivity. Sci. Bull. 61, 78–85 (2016). https://doi.org/10.1007/s11434-015-0946-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0946-1

Keywords

关键词

Navigation