Skip to main content
Log in

Efficient generation of NOON states on two microwave-photon resonators

  • Article
  • Quantum Information
  • Published:
Chinese Science Bulletin

Abstract

We present an efficient scheme for the generation of NOON states of photons in circuit QED assisted by a superconducting charge qutrit. It is completed with two kinds of manipulations, that is, the resonant operation on the qutrit and the resonator, and the single-qubit operation on the qutrit, and they both are high-fidelity operations. Compared with the one by a superconducting transmon qutrit proposed by Su et al. (Sci Rep 4:3898, 2014), our scheme does not require to maintain the qutrit in the third excited state with a long time, which relaxes the difficulty of its implementation in experiment. Moreover, the level anharmonicity of a charge qutrit is larger and it is better for us to tune the different transitions of the charge qutrit resonant to the resonator, which makes our scheme faster than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  2. Ren BC, Deng FG (2013) Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys Lett 10:115201

    Article  Google Scholar 

  3. Ren BC, Deng FG (2014) Hyper-parallel photonic quantum computation with coupled quantum dots. Sci Rep 4:4623

    Google Scholar 

  4. Wang YH, Song HS (2009) Preparation of multi-atom specially entangled W-class state and splitting quantum information. Chin Sci Bull 54:2599–2605

    Article  Google Scholar 

  5. Long GL, Xiao L (2004) Parallel quantum computing in a single ensemble quantum computer. Phys Rev A 69:052303

    Article  Google Scholar 

  6. Long GL, Xiao L (2003) Experimental realization of a fetching algorithm in a 7-qubit NMR spin Liouville space computer. J Chem Phys 119:8473–8481

    Article  Google Scholar 

  7. Feng GR, Xu GF, Long GL (2013) Experimental realization of nonadiabatic holonomic quantum computation. Phys Rev Lett 110:190501

    Article  Google Scholar 

  8. Hu CY, Young A, O’Brien JL et al (2008) Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys Rev B 78:085307

    Article  Google Scholar 

  9. Bonato C, Haupt F, Oemrawsingh SSR et al (2010) CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys Rev Lett 104:160503

    Article  Google Scholar 

  10. Wei HR, Deng FG (2013) Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities. Phys Rev A 87:022305

    Article  Google Scholar 

  11. Wang TJ, Song SY, Long GL (2012) Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys Rev A 85:062311

    Article  Google Scholar 

  12. Wang C (2012) Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys Rev A 86:012323

    Article  Google Scholar 

  13. Sheng YB, Zhou L, Wang L et al (2013) Efficient entanglement concentration for quantum dot and optical microcavities systems. Quant Inform Proc 12:1885–1895

    Article  Google Scholar 

  14. Togan E, Chu Y, Trifonov AS et al (2010) Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466:730–734

    Article  Google Scholar 

  15. Neumann P, Kolesov R, Naydenov B et al (2010) Quantum register based on coupled electron spins in a room-temperature solid. Nat Phys 6:249–253

    Article  Google Scholar 

  16. Wei HR, Deng FG (2013) Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys Rev A 88:042323

    Article  Google Scholar 

  17. Chen Q, Yang WL, Feng M et al (2011) Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys Rev A 83:054305

    Article  Google Scholar 

  18. Zheng AS, Li JH, Yu R et al (2012) Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process. Opt Express 20:16902

    Article  Google Scholar 

  19. Yang WL, Yin ZQ, Xu ZY et al (2010) One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-\(Q\) silica microsphere cavity. Appl Phys Lett 96:241113

    Article  Google Scholar 

  20. Knill E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409:46–52

    Article  Google Scholar 

  21. Nemoto K, Munro WJ (2004) Nearly deterministic linear optical controlled-not gate. Phys Rev Lett 93:250502

    Article  Google Scholar 

  22. Lin Q, Li J (2009) Quantum control gates with weak cross-Kerr nonlinearity. Phys Rev A 79:022301

    Article  Google Scholar 

  23. Beenakker CWJ, DiVincenzo DP, Emary C et al (2004) Charge detection enables free-electron quantum computation. Phys Rev Lett 93:020501

    Article  Google Scholar 

  24. Ren BC, Wei HR, Deng FG (2013) Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys Lett 10:095202

    Article  Google Scholar 

  25. Wallraff A, Schuster DI, Blais A et al (2004) Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431:162–67

    Article  Google Scholar 

  26. Liu YX, You JQ, Wei LF et al (2005) Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys Rev Lett 95:087001

    Article  Google Scholar 

  27. Wang YD, Xue F, Song Z et al (2007) Detection mechanism for quantum phase transition in superconducting qubit array. Phys Rev B 76:174519

    Article  Google Scholar 

  28. Cao Y, Huo WY, Ai Q et al (2011) Theory of degenerate three-wave mixing using circuit QED in solid-state circuits. Phys Rev A 84:053846

    Article  Google Scholar 

  29. Huo WY, Long GL (2008) Entanglement and squeezing in solid-state circuits. New J Phys 10:013026

    Article  Google Scholar 

  30. Gao GL, Cai GC, Huang SS et al (2012) 1\(\rightarrow \)N quantum controlled phase gate realized in a circuit QED system. Sci China Phys Mech Astron 55:1422–1426

    Article  Google Scholar 

  31. Wang H, Sun HC, Zhang J et al (2012) Transparency and amplification in a hybrid system of the mechanical resonator and circuit QED. Sci China Phys Mech Astron 55:2264–2272

    Article  Google Scholar 

  32. Qian Y, Zhang YQ, Xu JB (2012) Amplifying stationary quantum discord and entanglement between a superconducting qubit and a data bus by time-dependent electromagnetic field. Chin Sci Bull 57:1637–1642

    Article  Google Scholar 

  33. Zhang SL, Zhang GF, Wang YL et al (2013) A novel superconducting quantum interference device for biomagnetic measurements. Chin Sci Bull 58:2917–2919

    Article  Google Scholar 

  34. Li HJ, Wang YW, Wei LF et al (2013) Experimental demonstrations of high-\(Q\) superconducting coplanar waveguide resonators. Chin Sci Bull 58:2413–2417

    Article  Google Scholar 

  35. Yu LB, Tong NH, Xue ZY et al (2012) Simulation of the spin-boson model with superconducting phase qubit coupled to a transmission line. Sci China Phys Mech Astron 55:1557–1561

    Article  Google Scholar 

  36. Lucero E, Barends R, Chen Y et al (2012) Computing prime factors with a Josephson phase qubit quantum processor. Nat Phys 8:719–723

    Article  Google Scholar 

  37. Blais A, Huang RS, Wallraff A et al (2004) Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys Rev A 69:062320

    Article  Google Scholar 

  38. You JQ, Nori F (2011) Atomic physics and quantum optics using superconducting circuits. Nature 474:589–597

    Article  Google Scholar 

  39. Rigetti C, Gambetta JM, Poletto S et al (2012) Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys Rev B 86:100506

    Article  Google Scholar 

  40. DiCarlo L, Chow JM, Gambetta JM et al (2009) Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460:240–244

    Article  Google Scholar 

  41. Reed MD, DiCarlo L, Nigg SE et al (2012) Realization of three-qubit quantum error correction with superconducting circuits. Nature 482:382–385

    Article  Google Scholar 

  42. Reagor M, Paik H, Catelani G et al (2013) Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl Phys Lett 102:192604

    Article  Google Scholar 

  43. Schuster DI, Houck AA, Schreier JA et al (2007) Resolving photon number states in a superconducting circuit. Nature 445:515–518

    Article  Google Scholar 

  44. Johnson BR, Reed MD, Houck AA et al (2010) Quantum non-demolition detection of single microwave photons in a circuit. Nat Phys 6:663–667

    Article  Google Scholar 

  45. Strauch FW, Jacobs K, Simmonds RW et al (2010) Arbitrary control of entanglement between two superconducting resonators. Phys Rev Lett 105:050501

    Article  Google Scholar 

  46. Strauch FW (2012) All-resonant control of superconducting resonators. Phys Rev Lett 109:210501

    Article  Google Scholar 

  47. Hua M, Deng FG (2013) Selective-resonance-based quantum entangling operation on qubits in circuit QED. arXiv:1310.0102

  48. Zhou L, Sheng YB, Cheng WW et al (2013) Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf Process 12:1307–1320

    Article  Google Scholar 

  49. Merkel ST, Wilhelm FK (2010) Generation and detection of NOON states in superconducting circuits. New J Phys 12:093036

    Article  Google Scholar 

  50. Wang H, Mariantoni M, Bialczak RC et al (2011) Deterministic entanglement of photons in two superconducting microwave resonators. Phys Rev Lett 106:060401

    Article  Google Scholar 

  51. Su QP, Yang CP, Zheng SB (2014) Fast and simple scheme for generating NOON states of photons in circuit QED. Sci Rep 4:3898

    Google Scholar 

  52. Sandberg M, Wilson CM, Persson F et al (2008) Tuning the field in a microwave resonator faster than the photon lifetime. Appl Phys Lett 92:203501

    Article  Google Scholar 

  53. Allman MS, Altomare F, Whittaker JD et al (2010) rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. Phys Rev Lett 104:177004

    Article  Google Scholar 

  54. Bialczak RC, Ansmann M, Hofheinz M et al (2011) Fast tunable coupler for superconducting qubits. Phys Rev Lett 106:060501

    Article  Google Scholar 

  55. Haack G, Helmer F, Mariantoni M et al (2010) Resonant quantum gates in circuit quantum electrodynamics. Phys Rev B 82:024514

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11174039) and NECT-11-0031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Guo Deng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, M., Tao, MJ. & Deng, FG. Efficient generation of NOON states on two microwave-photon resonators. Chin. Sci. Bull. 59, 2829–2834 (2014). https://doi.org/10.1007/s11434-014-0443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0443-y

Keywords

Navigation