Skip to main content
Log in

Synthesis and property of imidazolium oxidative-thermoregulated ionic liquids

  • Article
  • Applied Chemistry
  • Published:
Chinese Science Bulletin

Abstract

A series of novel imidazolium oxidative-thermoregulated bifunctional ionic liquids (ILs) have been synthesized by introducing the thermoregulated structural unit into imidazolium cation and using heteropolyanion as the anion of ILs. The structures of these new type of task-specific ionic liquids (TSILs) are characterized by FT-IR and 1H NMR. The thermostability of ILs is analyzed by thermogravimetry. The thermoregulated properties of ILs in aqueous and organic solvents are mainly investigated. These ILs have the corresponding cloud points (CPs) in aqueous. The effects of IL concentration, polymerization degree, inorganic additives and organic additives on the CP are studied. IL/DMF/n-heptane or n-octane biphasic system has the corresponding critical solution temperature (CST), and has the feature of “homogeneous at high temperature, heterogeneous at low temperature”. The effects of IL dosage and polymerization degree on the CST are given. IL/DMF/n-octane thermoregulated biphasic system has been successfully applied for catalytic oxidative desulfurization of model fuels. This study opens up a new way for catalytic oxidation to achieve an integration of homogeneous catalysis and heterogeneous separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, 2nd edn. Wiley, Weinheim

    Google Scholar 

  2. Welton T (1999) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  Google Scholar 

  3. Bui TLT, Korth W, Aschauer S et al (2009) Alkylation of isobutane with 2-butene using ionic liquids as catalyst. Green Chem 11:1961–1967

    Article  Google Scholar 

  4. Cai XJ, Cui SH, Qu LP et al (2008) Alkylation of benzene and dichloromethane to diphenylmethane with acidic ionic liquids. Catal Commun 9:1173–1177

    Article  Google Scholar 

  5. Chen XF, Peng YP (2008) Chloroferrate(III) ionic liquid: efficient and recyclable catalyst for solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Catal Lett 122:310–313

    Article  Google Scholar 

  6. Gonnot V, Antheaume C, Nicolas M et al (2009) Highly selective three-step synthesis of rhein in chloroaluminate molten salt: preclusion of the Hayashi rearrangement. Eur J Org Chem 35:6205–6208

    Article  Google Scholar 

  7. Peng YQ, Song GH (2007) Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catal Commun 8:111–114

    Article  Google Scholar 

  8. Ye CF, Xiao JC, Twamley B et al (2007) Basic ionic liquids: facile solvents for carbon–carbon bond formation reactions and ready access to palladium nanoparticles. Eur J Org Chem 30:5095–5100

    Article  Google Scholar 

  9. Forsyth SA, Fröhlich U, Goodrich P et al (2010) Boronic acid based photoinduced electron transfer (PET) fluorescence sensors for saccharides. New J Chem 34:723–731

    Article  Google Scholar 

  10. Tan R, Yin DH, Yu NY et al (2009) Easily recyclable polymeric ionic liquid-functionalized chiral salen Mn(III) complex for enantioselective epoxidation of styrene. J Catal 263:284–291

    Article  Google Scholar 

  11. Sahoo S, Kumar P, Lefebvre F et al (2009) Oxidative kinetic resolution of alcohols using chiral Mn–salen complex immobilized onto ionic liquid modified silica. Appl Catal A 354:17–25

    Article  Google Scholar 

  12. Liu G, Hou MQ, Song JY et al (2010) Immobilization of Pd nanoparticles with functional ionic liquid grafted onto cross-linked polymer for solvent-free Heck reaction. Green Chem 12:65–69

    Article  Google Scholar 

  13. Rashinkar G, Salunkhe R (2010) Ferrocene labelled supported ionic liquid phase (SILP) containing organocatalytic anion for multi-component synthesis. J Mol Catal A 316:146–152

    Article  Google Scholar 

  14. Zheng X, Qian YB, Wang YM (2010) Direct asymmetric aza Diels–Alder reaction catalyzed by chiral 2-pyrrolidinecarboxylic acid ionic liquid. Catal Commun 11:567–570

    Article  Google Scholar 

  15. Zhang SL, Huang YZ, Jing HW et al (2009) Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides. Green Chem 11:935–938

    Article  Google Scholar 

  16. Siyutkin DE, Kucherenko AS, Zlotin SG (2010) A new (S)-prolinamide modified by an ionic liquid moiety—a high performance recoverable catalyst for asymmetric aldol reactions in aqueous media. Tetrahedron 66:513–518

    Article  Google Scholar 

  17. Li M, Rooy SLD, Bwambok DK et al (2009) Magnetic chiral ionic liquids derived from amino acids. Chem Commun 45:6922–6924

    Article  Google Scholar 

  18. Yue CB, Mao AQ, Wei YY et al (2008) Knoevenagel condensation reaction catalyzed by task-specific ionic liquid under solvent-free conditions. J Catal Commun 9:1571–1574

    Article  Google Scholar 

  19. Sun J, Cheng WG, Fan W et al (2009) Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. J Catal Today 148:361–367

    Article  Google Scholar 

  20. Dubreuil JF, Bazureau JP (2003) Efficient combination of task-specific ionic liquid and microwave dielectric heating applied to one-pot three component synthesis of a small library of 4-thiazolidinones. Tetrahedron 59:6121–6130

    Article  Google Scholar 

  21. Bourbigou HO, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to application. Appl Catal A 373:1–56

    Article  Google Scholar 

  22. Virtanen P, Salmi TO, Mikkola JP (2010) Supported ionic liquid catalysts (SILCA) for preparation of organic chemicals. Top Catal 53:1096–1103

    Article  Google Scholar 

  23. Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems and controversies. Angew Chem Int Ed 47:654–670

    Article  Google Scholar 

  24. Chowdhury S, Mohan RS, Scott JL (2007) Reactivity of ionic liquids. Tetrahedron 63:2363–2389

    Article  Google Scholar 

  25. Yu FL, Zhang RL, Xie CX et al (2010) Polyether-substituted thiazolium ionic liquid catalysts—a thermoregulated phase-separable catalysis system for the Stetter reaction. Green Chem 12:1196–1200

    Article  Google Scholar 

  26. Yu FL, Zhang RL, Xie CX et al (2010) Synthesis of thermoregulated phase-separable triazolium ionic liquids catalysts and application for Stetter reaction. Tetrahedron 66:9145–9150

    Article  Google Scholar 

  27. Rajkumar T, Rao GR (2008) Characterization of hybrid molecular material prepared by 1-butyl 3-methyl imidazolium bromide and phosphotungstic acid. Mater Lett 62:4134–4136

    Article  Google Scholar 

  28. Rosen MJ (1989) Surfactants and interfacial phenomena, chap 4, 2nd edn. Wiley, New York

    Google Scholar 

  29. Tasaki K (1996) Poly(oxyethylene)-water interactions: a molecular dynamics study. J Am Chem Soc 118:8459–8469

    Article  Google Scholar 

  30. Schott HJ (1969) Hydrophile-lipophile balance and cloud points of nonionic surfactants. Pharm Sci 58:1443–1449

    Article  Google Scholar 

  31. Schott H (2001) Effect of inorganic additives on solutions of nonionic surfactants—XVI. Limiting cloud points of highly polyoxyethylated surfactants. Colloids Surf A 186:129–136

    Article  Google Scholar 

  32. Zhang W, Xu K, Zhang Q et al (2010) Oxidative desulfurization of dibenzothiophene catalyzed by ionic liquid [BMIm]HSO4. Ind Eng Chem Res 49:11760–11763

    Article  Google Scholar 

  33. Huang WL, Zhu WS, Li HM et al (2010) Heteropolyanion-based ionic liquid for deep desulfurization of fuels in ionic liquids. Ind Eng Chem Res 49:8998–9003

    Article  Google Scholar 

  34. Lu HY, Gao JB, Jiang ZX et al (2007) Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis. Chem Commun 2:150–152

    Google Scholar 

  35. Lu HY, Zhang YN, Jiang ZX et al (2010) Aerobic oxidative desulfurization of benzothiophene, dibenzothiophene and 4,6-dimethyldibenzothiophene using an Anderson-type catalyst [(C18H37)2N(CH3)2]5[IMo6O24]. Green Chem 12:1954–1958

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21176129), the Foundation for Outstanding Young Scientist in Shandong Province (BS2011NJ008) and the Project of Basic Research in Qingdao City (13-1-4-194-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congxia Xie.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Liu, C., Xie, C. et al. Synthesis and property of imidazolium oxidative-thermoregulated ionic liquids. Chin. Sci. Bull. 59, 4705–4711 (2014). https://doi.org/10.1007/s11434-014-0397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0397-0

Keywords

Navigation