Skip to main content
Log in

The impact of ocean warming on marine organisms

  • Review
  • Oceanology
  • Published:
Chinese Science Bulletin

Abstract

Since the beginning of the Industrial Revolution during the late eighteenth to the early nineteenth centuries, there has been rapidly increasing release of greenhouse gases, notably CO2, into the atmosphere. As a consequence of this atmospheric change, the Earth’s average surface temperature has increased by approximately 0.6 °C over the last 100 years. The rate of release of greenhouse gases continues to increase, and global surface temperature rose by approximately 0.2 °C per decade in the last 30 years, a rate that is greater than at any other time during the last 1,000 years. The wide-ranging effects of these increases in greenhouse gases and temperature on the biosphere are subject to intense scientific study. Much has been learned, but much more needs to be elucidated, if we are to predict how terrestrial and aquatic ecosystems will be affected by global change. This brief review focuses on the marine environment and offers a concise summary of some of the important advances in our knowledge about the impacts of global change, including physical and chemical changes of the ocean, as well as the impact of ocean warming on marine organisms. Our analysis also points out areas where critical new information is needed if we are to predict the future of marine ecosystems in a warming world with accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Google Scholar 

  2. Rosenzweig C, Karoly D, Vicarelli M et al (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Google Scholar 

  3. Hansen J, Sato M, Ruedy R et al (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Google Scholar 

  4. IPCC 3rd (2001) Climate change 2001. Third assessment report of the intergovernmental panel on climate change IPCC (WG I & II). Cambridge University Press, Cambridge

  5. Rees AP (2012) Pressures on the marine environment and the changing climate of ocean biogeochemistry. Philos Trans A Math Phys Eng Sci 370:5613–5635

    Google Scholar 

  6. Levitus S, Antonov JI, Boyer TP et al (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608

    Google Scholar 

  7. IPCC (2007) Climate change 2007: synthesis report summary for policymakers, section 1: observed changes in climate and their effects, in IPCC AR4 SYR. Cambridge University Press, Cambridge

  8. Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277

    Google Scholar 

  9. Kim HM, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325:77–80

    Google Scholar 

  10. Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19:R602–R614

    Google Scholar 

  11. Anisimov O, Fitzharris B (2001) Polar Regions (Arctic and Antarctic). In: Climate change 2001. Impacts, adaptation, and vulnerability. Contribution of working group II to the third assessment report of the NZRSTCV-092009 intergovernmental panel on climate change, WMO and UNEP. Cambridge University Press, Cambridge, pp 801–841

  12. Fitzharris BB, Prowse T (2002) Impacts of climate change on global sea ice. In: Squire V, Langhorne P (eds) Ice in the environment. International association of hydraulic engineering and research. Proceedings of the 16th international association of hydraulic engineering symposium, vol 3. Department of Physics, University of Otago, Dunedin, NZ, pp 75–82

  13. Marcott SA, Clark PU, Padman L et al (2011) Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc Natl Acad Sci USA 108:E1359–E1360

    Google Scholar 

  14. Liu J, Curry JA (2010) Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proc Natl Acad Sci USA 107:14987–14992

    Google Scholar 

  15. Cavalieri DJ, Gloersen P, Parkinson CL et al (1997) Observed hemispheric asymmetry in global sea ice changes. Science 278:1104–1106

    Google Scholar 

  16. Parkinson CD, Cavalieri P, Gloersen H et al (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophy Res (Oceans) C9:20837–20856

    Google Scholar 

  17. Johannessen OM, Shalina EV, Miles MW (1999) Satellite evidence for an arctic sea ice cover in transformation. Science 286:1937–1939

    Google Scholar 

  18. Serreze MC, Walsh JE, Chapin FS III et al (2000) Observational evidence of recent change in the northern high latitude environment. Clim Change 46:159–207

    Google Scholar 

  19. Joughin I, Alley RB, Holland DM (2012) Ice-sheet response to oceanic forcing. Science 338:1172–1176

    Google Scholar 

  20. Hellmer HH, Kauker F, Timmermann R et al (2012) Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485:225–228

    Google Scholar 

  21. Pritchard HD, Ligtenberg SR, Fricker HA et al (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505

    Google Scholar 

  22. Hay CC, Morrow E, Kopp RE et al (2013) Estimating the sources of global sea level rise with data assimilation techniques. Proc Natl Acad Sci USA 110:3692–3699

    Google Scholar 

  23. Deschamps P, Durand N, Bard E et al (2012) Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago. Nature 483:559–564

    Google Scholar 

  24. Lyman JM, Good SA, Gouretski VV et al (2010) Robust warming of the global upper ocean. Nature 465:334–337

    Google Scholar 

  25. de Boer AM, Sigman DM, Toggweiler JR et al (2007) Effect of global ocean temperature change on deep ocean ventilation. Paleoceanography 22:PA2210

    Google Scholar 

  26. Jiao NZ, Herndl GJ, Hansell DA et al (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599

    Google Scholar 

  27. Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Google Scholar 

  28. Ducklow HW, Steinberg DK, Buesseler K (2001) Upper ocean carbon export and the biological pump. Oceanography 14:50–58

    Google Scholar 

  29. Raven JA, Falkowski PG (1999) Oceanic sinks for atmospheric CO2. Plant, Cell Environ 22:741–755

    Google Scholar 

  30. Stott L, Timmermann A, Thunell R (2007) Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science 318:435–438

    Google Scholar 

  31. Keeling RF, Kortzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229

    Google Scholar 

  32. Gruber N (2011) Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos Trans A Math Phys Eng Sci 369:1980–1996

    Google Scholar 

  33. Frölicher TL, Joos F, Plattner GK et al (2009) Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle: climate model ensemble. Glob Biogeochem Cycles 23:1003

    Google Scholar 

  34. Plattner GK, Joos F, Stocker TF (2002) Revision of the global carbon budget due to changing air-sea oxygen fluxes. Glob Biogeochem Cycles 16:1096

    Google Scholar 

  35. Bopp L, Le Quéré C, Heimann M et al (2002) Climate-induced oceanic oxygen fluxes: implications for the contemporary carbon budget. Glob Biogeochem Cycles 16:1022

    Google Scholar 

  36. Oschlies A, Schulz KG, Riebesell U et al (2008) Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export. Glob Biogeochem Cycles 22:GB4008

    Google Scholar 

  37. Matear RJ, Hirst AC, McNeil BI (2000) Changes in dissolved oxygen in the Southern Ocean with climate change. Geochem Geophys Geosyst 1:1050

    Google Scholar 

  38. Schmittner A, Oschlies A, Matthews HD et al (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a businessas-usual CO2 emission scenario until year 4000 AD. Glob Biogeochem Cycles 2008 22:GB1013

    Google Scholar 

  39. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA 105:15452–15457

    Google Scholar 

  40. Costanza R, d’Arge R, de Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Google Scholar 

  41. Hogg OT, Barnes DK, Griffiths HJ (2011) Highly diverse, poorly studied and uniquely threatened by climate change: an assessment of marine biodiversity on South Georgia’s continental shelf. PLoS ONE 6:e19795

    Google Scholar 

  42. Clarke A (1993) Temperature and extinction in the sea—a physiologist’s view. Paleobiology 19:499–518

    Google Scholar 

  43. Wernberg T, Russell BD, Thomsen MS et al (2011) Seaweed communities in retreat from ocean warming. Curr Biol 21:1828–1832

    Google Scholar 

  44. Martínez B, Arenas F, Rubal M et al (2012) Physical factors driving intertidal macroalgae distribution: physiological stress of a dominant fucoid at its southern limit. Oecologia 170:341–353

    Google Scholar 

  45. Richardson AJ, Schoeman DS (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609–1612

    Google Scholar 

  46. Peter KH, Sommer U (2012) Phytoplankton cell size: intra- and interspecific effects of warming and grazing. PLoS ONE 7:e49632

    Google Scholar 

  47. Sangil C, Sansón M, Afonso-Carrillo J et al (2012) Changes in subtidal assemblages in a scenario of warming: proliferations of ephemeral benthic algae in the Canary Islands (eastern Atlantic Ocean). Mar Environ Res 77:120–128

    Google Scholar 

  48. Dove SG, Hoegh-Guldberg O (2006) Coral bleaching can be caused by stress: the cell physiology of coral bleaching. In: Hoegh-Guldberg O, Phinney JT, William Skirving et al (eds) Coral reefs and climate change: science and management. American Geophysical Union Washington, pp 1–18

  49. Carilli J, Donner SD, Hartmann AC (2012) Historical temperature variability affects coral response to heat stress. PLoS ONE 7:e34418

    Google Scholar 

  50. Cantin NE, Cohen AL, Karnauskas KB et al (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325

    Google Scholar 

  51. Pandolfi JM, Connolly SR, Marshall DJ et al (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Google Scholar 

  52. Fagoonee II, Wilson HB, Hassell MP et al (1999) The dynamics of zooxanthellae populations: a long-term study in the field. Science 283:843–845

    Google Scholar 

  53. Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Google Scholar 

  54. Godinot C, Houlbrèque F, Grover R et al (2011) Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE 6:e25024

    Google Scholar 

  55. Hoeke RK, Jokiel PL, Buddemeier RW et al (2011) Projected changes to growth and mortality of Hawaiian corals over the next 100 years. PLoS ONE 6:e18038

    Google Scholar 

  56. Rombouts I, Beaugrand G, Ibanez F et al (2009) Global latitudinal variations in marine copepod diversity and environmental factors. Proc Biol Sci 276:3053–3062

    Google Scholar 

  57. Beaugrand G, Edwards M, Legendre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. Proc Natl Acad Sci USA 107:10120–10124

    Google Scholar 

  58. Murphy EJ, Trathan PN, Watkins JL et al (2007) Climatically driven fluctuations in Southern Ocean ecosystems. Proc Biol Sci 274:3057–3067

    Google Scholar 

  59. Stillman JH, Somero GN (2000) A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Physiol Biochem Zool 73:200–208

    Google Scholar 

  60. Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. J Exp Biol 213:912–920

    Google Scholar 

  61. Smale DA, Wernberg T, Peck LS et al (2011) Turning on the heat: ecological response to simulated warming in the sea. PLoS ONE 6:e16050

    Google Scholar 

  62. Graham NA, McClanahan TR, MacNeil MA et al (2008) Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems. PLoS ONE 3:e3039

    Google Scholar 

  63. MacNeil MA, Graham NA, Cinner JE et al (2010) Transitional states in marine fisheries: adapting to predicted global change. Philos Trans R Soc Lond B 365:3753–3763

    Google Scholar 

  64. Munday PL, McCormick MI, Nilsson GE (2012) Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? J Exp Biol 215:3865–3873

    Google Scholar 

  65. Patarnello T, Verde C, di Prisco G et al (2011) How will fish that evolved at constant sub-zero temperatures cope with global warming? Notothenioids as a case study. BioEssays 33:260–268

    Google Scholar 

  66. Perry AL, Low PJ, Ellis JR et al (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Google Scholar 

  67. Dulvy NK, Rogers SI, Jennings S et al (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45:1029–1039

    Google Scholar 

  68. Simpson SD, Jennings S, Johnson MP et al (2011) Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr Biol 21:1565–1570

    Google Scholar 

  69. Kaschner K, Tittensor DP, Ready J et al (2011) Current and future patterns of global marine mammal biodiversity. PLoS ONE 6:e19653

    Google Scholar 

  70. Whitehead H, McGill B, Worm B (2008) Diversity of deep-water cetaceans in relation to temperature: implications for ocean warming. Ecol Lett 11:1198–1207

    Google Scholar 

  71. Marx FG, Uhen MD (2010) Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327:993–996

    Google Scholar 

  72. Harlin-Cognato AD, Markowitz T, Würsig B (2007) Multi-locus phylogeography of the dusky dolphin (Lagenorhynchus obscurus): passive dispersal via the west-wind drift or response to prey species and climate change? BMC Evol Biol 7:131

    Google Scholar 

  73. Maccracken JG (2012) Pacific Walrus and climate change: observations and predictions. Ecol Evol 2:2072–2090

    Google Scholar 

  74. Kovacs KM, Lydersen C (2008) Climate change impacts on seals and whales in the North Atlantic Arctic and adjacent shelf seas. Sci Prog 91:117–150

    Google Scholar 

  75. Le Boeuf BJ, Crocker DE (2005) Ocean climate and seal condition. BMC Biol 3:9

    Google Scholar 

  76. Harley CD, Randall Hughes A, Hultgren KM et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Google Scholar 

  77. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  78. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  79. Braby CE, Somero GN (2006) Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus). J Exp Biol 209:2554–2566

    Google Scholar 

  80. Lockwood BL, Somero GN (2012) Functional determinants of temperature adaptation in enzymes of cold- versus warm-adapted mussels (Genus Mytilus). Mol Biol Evol 29:3061–3070

    Google Scholar 

  81. Somero GN (2012) The physiology of global change: linking patterns to mechanisms. Annu Rev Mar Sci 4:39–61

    Google Scholar 

  82. Lockwood BL, Sanders JG, Somero GN (2010) Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J Exp Biol 213:3548–3558

    Google Scholar 

  83. Tomanek L, Zuzow MJ (2010) The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. J Exp Biol 213:3559–3574

    Google Scholar 

  84. Yao CL, Somero GN (2012) The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and Mytilus californianus): DNA damage, membrane integrity, apoptosis and signaling pathways. 215:4267–4277

  85. Yao CL, Somero GN (2013) Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: cell cycle regulation and DNA repair. Comp Biochem Physiol A 165:159–168

    Google Scholar 

  86. Morley SA, Hirse T, Pörtner HO et al (2009) Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comp Biochem Physiol A 153:154–161

    Google Scholar 

  87. Gardiner NM, Munday PL, Nilsson GE (2010) Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures. PLoS ONE 5:e13299

    Google Scholar 

  88. Melatunan S, Calosi P, Rundle SD et al (2011) Exposure to elevated temperature and Pco(2) reduces respiration rate and energy status in the periwinkle Littorina littorea. Physiol Biochem Zool 84:583–594

    Google Scholar 

  89. Capossela KM, Brill RW, Fabrizio MC et al (2012) Metabolic and cardiorespiratory responses of summer flounder Paralichthys dentatus to hypoxia at two temperatures. J Fish Biol 81:1043–1058

    Google Scholar 

  90. Anttila K, Dhillon RS, Boulding EG et al (2013) Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level. J Exp Biol 216:1183–1190

    Google Scholar 

  91. Dong YW, Yu SS, Wang QL et al (2011) Physiological responses in a variable environment: relationships between metabolism, hsp and thermotolerance in an intertidal-subtidal species. PLoS ONE 6:e26446

    Google Scholar 

  92. Anestis A, Pörtner HO, Lazou A et al (2008) Metabolic and molecular stress responses of sublittoral bearded horse mussel Modiolus barbatus to warming sea water: implications for vertical zonation. J Exp Biol 211:2889–2898

    Google Scholar 

  93. Windisch HS, Kathöver R, Pörtner HO et al (2011) Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. Am J Physiol Regul Integr Comp Physiol 301:R1453–R1466

    Google Scholar 

  94. Otero J, Jensen AJ, L’abée-Lund JH et al (2012) Contemporary ocean warming and freshwater conditions are related to later sea age at maturity in Atlantic salmon spawning in Norwegian rivers. Ecol Evol 2:2192–2203

    Google Scholar 

  95. Rosa R, Pimentel MS, Boavida-Portugal J et al (2012) Ocean warming enhances malformations, premature hatching, metabolic suppression and oxidative stress in the early life stages of a keystone squid. PLoS ONE 7:e38282

    Google Scholar 

  96. Byrne M, Ho M, Selvakumaraswamy P et al (2009) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc Biol Sci 276:1883–1888

    Google Scholar 

  97. Webb JB, Eckert GL, Shirley TC et al (2007) Changes in embryonic development and hatching in Chionoecetes opilio (snow crab) with variation in incubation temperature. Biol Bull 213:67–75

    Google Scholar 

  98. Sheppard Brennand H, Soars N, Dworjanyn SA et al (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE 5:e11372

    Google Scholar 

  99. Forster J, Hirst AG, Woodward G (2011) Growth and development rates have different thermal responses. Am Nat 178:668–678

    Google Scholar 

  100. Harvell CD, Kim K, Burkholder JM et al (1999) Emerging marine diseases—climate links and anthropogenic factors. Science 285:1505–1510

    Google Scholar 

  101. Harvell CD, Mitchell CE, Ward JR et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Google Scholar 

  102. Shiah FK, Ducklow HW (1994) Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA. Mar Ecol Prog Ser 103:297–308

    Google Scholar 

  103. Vezzulli L, Brettar I, Pezzati E et al (2012) Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J 6:21–30

    Google Scholar 

  104. Holmquist GU, Walker HW, Stahr HM (1983) Influence of temperature, pH, water activity and antifungal agents on growth of aspergillus flavus and A. parasiticus. J Food Sci 48:778–782

    Google Scholar 

  105. Wilson WH, Francis I, Ryan K et al (2001) Temperature induction of viruses in symbiotic dinoflagellates. Aquat Microb Ecol 25:99–102

    Google Scholar 

  106. Withyachumnarnkul B, Boonsaeng V, Chomsoong R et al (2003) Seasonal variation in white spot syndrome virus-positive samples in broodstock and post-larvae of Penaeus monodon in Thailand. Dis Aquat Organ 53:167–171

    Google Scholar 

  107. Danovaro R, Corinaldesi C, Dell’anno A et al (2011) Marine viruses and global climate change. FEMS Microb Rev 35:993–1034

    Google Scholar 

  108. Adams MB, Nowak BF (2003) Amoebic gill disease: sequential pathology in cultured Atlantic salmon, Salmo salar L. J Fish Dis 26:601–614

    Google Scholar 

  109. Khan RA. Influence of environmental changes in the north-western Atlantic Ocean on a parasite, Echinorhynchus gadi (Acanthocephala) of Atlantic cod (Gadus morhua) occurring off coastal Labrador. Can J Helminthol 82:203–209

  110. Karvonen A, Rintamäki P, Jokela J et al (2010) Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases. Int J Parasitol 40:1483–1488

    Google Scholar 

  111. Jun LJ, Jeong JB, Kim JH et al (2009) Influence of temperature shifts on the onset and development of red sea bream iridoviral disease in rock bream Oplegnathus fasciatus. Dis Aquat Organ 84:201–208

    Google Scholar 

  112. Schmidt-Posthaus H, Bettge K, Forster U et al (2012) Kidney pathology and parasite intensity in rainbow trout Oncorhynchus mykiss surviving proliferative kidney disease: time course and influence of temperature. Dis Aquat Organ 97:207–218

    Google Scholar 

  113. Porter JW, Dustan JP, Japp JW et al (2001) Patterns of spread of coral disease in the Florida Keys. Hydrobiologia 460:1–24

    Google Scholar 

  114. Ford SE (1996) Range extension by the oyster parasite Perkinsus marinus into the northeastern United States: response to climate change? J Shellfish Res 15:45–56

    Google Scholar 

  115. Cook TM, Folli J, Klinck S et al (1998) The relationship between increasing sea-surface temperature and the northward spread of Perkinsus marinus (DERMO) disease epizootics in oysters. Estuar Coast Shelf Sci 46:587–597

    Google Scholar 

  116. Sedas VT (2007) Influence of environmental factors on the presence of Vibrio cholerae in the marine environment: a climate link. J Infect Dev Cty 1:224–241

    Google Scholar 

  117. Colwell RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031

    Google Scholar 

  118. Pascual M, Rodo X, Ellner SP et al (2000) Cholera dynamics and El Niño-Southern oscillation. Science 289:1766–1769

    Google Scholar 

  119. Anyamba A, Linthicum KJ, Small JL et al (2012) Climate teleconnections and recent patterns of human and animal disease outbreaks. PLoS Negl Trop Dis 6:e1465

    Google Scholar 

  120. Case RJ, Longford SR, Campbell AH et al (2011) Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga. Environ Microbiol 13:529–537

    Google Scholar 

  121. Sokolow S (2009) Effects of a changing climate on the dynamics of coral infectious disease: a review of the evidence. Dis Aquat Organ 87:5–18

    Google Scholar 

  122. El-Fadel M, Ghanimeh S, Maroun R et al (2012) Climate change and temperature rise: implications on food- and water-borne diseases. Sci Total Environ 437:15–21

    Google Scholar 

  123. Reid PC, Fischer AC, Lewis-Brown E et al (2009) Chapter 1. Impacts of the oceans on climate change. Adv Mar Biol 56:1–150

    Google Scholar 

  124. Teck SJ, Halpern BS, Kappel CV et al (2010) Using expert judgment to estimate marine ecosystem vulnerability in the California Current. Ecol Appl 20:1402–1416

    Google Scholar 

  125. Behrenfeld MJ, O’Malley RT, Siegel DA et al (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755

    Google Scholar 

  126. Wohlers J, Engel A, Zöllner E et al (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Natl Acad Sci USA 106:7067–7072

    Google Scholar 

  127. Clarke A, Murphy EJ, Meredith MP et al (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans R Soc Lond B 362:149–166

    Google Scholar 

  128. Burrows MT, Schoeman DS, Buckley LB et al (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655

    Google Scholar 

  129. Smith KL Jr, Ruhl HA, Bett BJ et al (2009) Climate, carbon cycling, and deep-ocean ecosystems. Proc Natl Acad Sci USA 106:19211–19218

    Google Scholar 

  130. Cheung WW, Watson R, Pauly D (2013) Signature of ocean warming in global fisheries catch 2013. Nature 497:365–368

    Google Scholar 

  131. Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779

    Google Scholar 

  132. Sorte CJ, Williams SL, Zerebecki RA (2010) Ocean warming increases threat of invasive species in a marine fouling community. Ecology 91:2198–2204

    Google Scholar 

  133. Jackson JB (2010) The future of the oceans past. Philos Trans R Soc Lond B 365:3765–3778

    Google Scholar 

  134. Funk C, Dettinger MD, Michaelsen JC et al (2008) Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc Natl Acad Sci USA 105:11081–11086

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41076076), the National Basic Research Program of China (2011CB111604) and the National Natural Science Foundation of China (41276178 and 31101882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui-Luan Yao.

About this article

Cite this article

Yao, CL., Somero, G.N. The impact of ocean warming on marine organisms. Chin. Sci. Bull. 59, 468–479 (2014). https://doi.org/10.1007/s11434-014-0113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0113-0

Keywords

Navigation