Skip to main content
Log in

Excellent ethanol sensor based on multiwalled carbon nanotube-doped ZnO

  • Article
  • Electron Physics
  • Published:
Chinese Science Bulletin

Abstract

Multiwalled carbon nanotubes (MWNTs) were synthesized through CVD method, and the gas sensitive materials MWNTs/ZnO were obtained by mixing MWNTs and ZnO. The gas sensing properties of the as-prepared materials were investigated. The results show that the gas sensing properties of ZnO sensor are significantly improved by doping MWNTs. The sensitivity, response time and recovery time to 50 ppm ethanol at 260 °C are 46, 4 and 20 s, respectively. We also examined the selectivity of 0.1 wt% MWNTs-doped ZnO sensors to different gases. The results show that the sensor possesses an excellent selectivity to ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu X, Siu G, Fu C et al (2001) Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl Phys Lett 78:2285–2287

    Article  Google Scholar 

  2. Leschkies KS, Divakar R, Basu J et al (2007) Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett 7:1793–1798

    Article  Google Scholar 

  3. Fukumura T, Jin Z, Kawasaki M et al (2001) Magnetic properties of Mn-doped ZnO. Appl Phys Lett 78:958–960

    Article  Google Scholar 

  4. Forleo A, Francioso L, Capone S et al (2010) Synthesis and gas sensing properties of ZnO quantum dots. Sens Actuators B Chem 146:111–115

    Article  Google Scholar 

  5. Wang X (2012) Improved ethanol, acetone and H2 sensing performances of micro-sensors based on loose ZnO nanofibers. Chin Sci Bull 57:4653–4658

    Article  Google Scholar 

  6. Lee YM, Huang CM, Chen HW et al (2013) Low temperature solution- processed ZnO nanorod arrays with application to liquid ethanol sensors. Sens Actuators A Phys 189:307–312

    Article  Google Scholar 

  7. Ang W, Zhao W, Liu HP et al (2011) Room-temperature NH3 gas sensor based on hydrothermally grown ZnO nanorods. Chin Phys Lett 28:080702

    Article  Google Scholar 

  8. Yu HL, Li L, Gao XM et al (2012) Synthesis and H2S gas sensing properties of cage-like alpha-MoO3/ZnO composite. Sens Actuators B Chem 171:679–685

    Article  Google Scholar 

  9. Liu L, Li S, Zhuang J et al (2011) Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sens Actuators B Chem 155:782–788

    Article  Google Scholar 

  10. Minh VA, Tuan LA, Huy TQ et al (2013) Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl Surf Sci 265:458–464

    Article  Google Scholar 

  11. Chang CM, Hon MH, Leu IC (2012) Outstanding H2 sensing performance of Pd nanoparticle-decorated ZnO nanorod arrays and the temperature-dependent sensing mechanisms. ACS Appl Mater Interfaces 5:135–143

    Article  Google Scholar 

  12. Naseh MV, Khodadadi AA, Mortazavi Y et al (2010) Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon 48:1369–1379

    Article  Google Scholar 

  13. Liu L, Zhang T, Li S et al (2009) Micro-structure sensors based on ZnO microcrystals with contact-controlled ethanol sensing. Chin Sci Bull 54:4371–4375

    Article  Google Scholar 

  14. Wang H, Sun Z, Lu Q et al (2012) One-pot synthesis of (Au nanorod)-(metal sulfide) core–shell nanostructures with enhanced gas-sensing property. Small 8:1167–1172

    Article  Google Scholar 

  15. Zhang T, Zeng Y, Fan HT et al (2009) Synthesis, optical and gas sensitive properties of large-scale aggregative flowerlike ZnO nanostructures via simple route hydrothermal process. J Phys D Appl Phys 42:045103

    Article  Google Scholar 

  16. Liu L, Guo C, Li S et al (2010) Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens Actuators B Chem 150:806–810

    Article  Google Scholar 

  17. Lim SK, Hwang SH, Chang D et al (2010) Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens Actuators B Chem 149:28–33

    Article  Google Scholar 

  18. Qi Q, Zhang T, Liu L et al (2009) Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123. Sens Actuators B Chem 141:174–178

    Article  Google Scholar 

  19. Liu L, Zhang Y, Wang G et al (2011) High toluene sensing properties of NiO–SnO2 composite nanofiber sensors operating at 330 °C. Sens Actuators B Chem 160:448–454

    Article  Google Scholar 

  20. Egashira M, Shimizu Y, Takao Y (1990) Trimethylamine sensor based on semiconductive metal oxides for detection of fish freshness. Sens Actuators B Chem 1:108–112

    Article  Google Scholar 

  21. Xu J, Pan Q, Shun YA et al (2000) Grain size control and gas sensing properties of ZnO gas sensor. Sens Actuators B Chem 66:277–279

    Article  Google Scholar 

  22. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B Chem 121:18–35

    Article  Google Scholar 

  23. Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    Article  Google Scholar 

  24. Yamada Y, Yamashita K, Masuoka Y et al (2001) Zn–Sn–Sb–O thin film sensor for ppm-level NO2 detection. Sens Actuators B Chem 77:12–15

    Article  Google Scholar 

  25. Liang Y, Chen Y, Wang T (2004) Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer. Appl Phys Lett 85:666–668

    Article  Google Scholar 

  26. Robinson JA, Snow ES, Badescu SC et al (2006) Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett 6:1747–1751

    Article  Google Scholar 

  27. Cui S, Pu H, Lu G et al (2012) Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes. ACS Appl Mater Interfaces 4:4898–4904

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Jilin Environment Office (2009-22) and Jilin Provincial Science and Technology Department (20100344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

About this article

Cite this article

Shan, H., Liu, C., Liu, L. et al. Excellent ethanol sensor based on multiwalled carbon nanotube-doped ZnO. Chin. Sci. Bull. 59, 374–378 (2014). https://doi.org/10.1007/s11434-013-0034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0034-3

Keywords

Navigation