Skip to main content
Log in

Finding of high-pressure mafic granulites in the Amdo basement, central Tibet

  • Article
  • Geology
  • Published:
Chinese Science Bulletin

Abstract

High-pressure mafic granulites with a peak mineral assemblage of garnet + clinopyroxene + rutile + quartz were found in the Amdo basement, central Tibet. Two kinds of symplectites were identified that are composed of orthopyroxene + plagioclase ± spinel and hornblende + plagioclase around garnet, which were interpreted to develop during the retrogressing stages in the granulites. P-T estimates suggested that peak metamorphic conditions were about 860–920°C and 1.46–1.56 GPa, which retrogressed from post-peak phase at 820–890°C and 0.88–1.15 GPa to amphibolite facies at 550–670°C and 0.52–0.65 GPa. These three stages define a clockwise P-T path with near-isothermal decompression and cooling following the peak high-pressure metamorphism. This suggests that the Amdo granulites underwent an initial subduction to a deep crustal level of ∼50 km and then were rapidly exhumed to a shallow crustal level (∼20 km). The formation of Amdo granulites is considered to result from the arc-continent collision between the Amdo basement and the Qiangtang terrane in the middle Jurassic, which is a crucial step to the tectonic evolution of the Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang C F, Zhen X K. Tectonic features of Mount Jolmo Lungma region in southern Tibet, China (in Chinese). Sci China, 1973, 2: 1–12

    Google Scholar 

  2. Pan G T, Zhu D C, Wang L Q, et al. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: Evidence from geology and geophysics (in Chinese). Earth Sci Front, 2004, 11: 371–382

    Google Scholar 

  3. Ren J S, Xiao L W. Lifting the mysterious veil of the tectonics of the Qinghai-Tibet Plateau by 1:250000 geological mapping (in Chinese). Geol Bull Chin, 2004, 23: 1–11

    Google Scholar 

  4. Li C, Cheng L R, Hu K, et al. Study on the Paleo-Tethys Suture Zone of Longmu Co-Shuanghu (in Chinese). Beijing: Geological Publishing House, 1995. 1–131

    Google Scholar 

  5. Li C, Huang X P, Zhai Q G, et al. Longmu Co-Shuanghu-Jitang plate suture and the northern boundary of Gondwanaland in the Qinghai-Tibet Plateau (in Chinese). Earth Sci Front, 2006, 13: 136–147

    Google Scholar 

  6. Li C, Zhai Q G, Dong Y S, et al. Discovery of eclogite and its geological significance in Qiangtang area, central Tibet. Chinese Sci Bull, 2006, 51: 1095–1110

    Article  Google Scholar 

  7. Li C, Dong Y S, Zhai Q G, et al. Discovery of Paleozoic ophiolite in the Qiangtang of Tibet Plateau: Evidence from SHRIMP U-Pb dating and its tectonic implications (in Chinese). Acta Petrol Sin, 2008, 24: 31–36

    Google Scholar 

  8. Li C, Zhai Q G, Dong Y S, et al. Oceanic crust on the northern margin of Gondwana: Evidence from Early Paleozoic ophiolite in central Qiangtang, Qinghai-Tibet Plateau (in Chinese). Geol Bull Chin, 2008, 27: 1605–1612

    Google Scholar 

  9. Li C, Zhai Q G, Dong Y S. High-pressure eclogite-blueschist metamorphic belt and closure of Paleo-Tethys Ocean in central Qiangtang, Qinghai-Tibet Plateau. J Earth Sci, 2009, 20: 209–218

    Article  Google Scholar 

  10. Lu J P, Zhang N, Huang W H, et al. Characteristics and significance of the metamorphic minerals Glaucophane-Lawsonite assemblage in the Hongjishan Area, North-Central Qiangtang, Northern Tibet, China (in Chinese). Geol Bull Chin, 2006, 25: 70–75

    Google Scholar 

  11. Zhang K J, Cai J X, Zhang Y X, et al. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implication. Earth Planet Sci Lett, 2006, 245: 722–729

    Article  Google Scholar 

  12. Pullen A, Kapp P, Gehrels G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology, 2008, 36: 351–354

    Article  Google Scholar 

  13. Girardeau J, Marcoux J, Allègre C J, et al. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 1984, 307: 27–31

    Article  Google Scholar 

  14. Zhu D C, Pan G T, Mo X X, et al. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gandese: New insights from volcanic rocks (in Chinese). Acta Petrol Sin, 2006, 22: 534–546

    Google Scholar 

  15. Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 2003, 22: 1029

    Article  Google Scholar 

  16. Zhang K J, Tang X C. Eclogites in the interior of the Tibetan Plateau and their geodynamic implications. Chinese Sci Bull, 2009, 54: 2556–2567

    Article  Google Scholar 

  17. Xizang Bureau of Geology and Mineral Resources. Regional Geology of Xizang (in Chinese). Beijing: Geological Publishing House, 1993. 1–707

  18. Geological Survey of Qinghai Province. Report of Regional Geology of Zaduo County of Qinghai Province (1:250000) (in Chinese). 2006. 1–246

  19. O’Brien P J, Rözler J. High-pressure granulites: Formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol, 2003, 21: 3–20

    Article  Google Scholar 

  20. Brown M. A duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 2006, 34: 961–964

    Article  Google Scholar 

  21. Zheng Y F, Ye K, Zhang L F. Developing plate tectonics from oceanic subduction to continental collision. Chinese Sci Bull, 2009, 54: 2549–2555

    Article  Google Scholar 

  22. Huang J Q, Chen B W. The Evolution of the Tethys in China and Adjacent Regions (in Chinese). Beijing: Geological Publishing House, 1987. 1–78

    Google Scholar 

  23. Dewey J F, Shackelton R M, Chang C, et al. The tectonic development of the Tibetan Plateau. Phil Trans R Soc Lond A, 1988, 327: 379–413

    Article  Google Scholar 

  24. Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen. Ann Rev Earth Planet Sci, 2000, 28: 211–280

    Article  Google Scholar 

  25. Xu R H, Schärer U, Allègre C J. Magmatism and metamorphism in the Lhasa block (Tibet): A chronological study. J Geol, 1985, 93: 41–57

    Article  Google Scholar 

  26. Coward M P, Kidd W S F, Yun P, et al. The structure of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond A, 1988, 327: 307–336

    Article  Google Scholar 

  27. Guynn J H, Kapp P, Pullen A, et al. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 2006, 34: 505–508

    Article  Google Scholar 

  28. Bureau of Geology of Tibet Autonomous Region. The special report of regional geological survey of the People’s Republic of China. Composition and tectonic evolution of Nierong complex in northern Tibet (1:250000)-Naqu town (in Chinese). 2005

  29. Harris N B W, Holland T J B, Tindle A G. Metamorphic rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond A, 1988, 327: 203–213

    Article  Google Scholar 

  30. Kidd W S F, Pan Y S, Chang C F, et al. Geological mapping of the 1985 Chinese-British Tibetan (Xizang-Qinghai) Plateau geotraverse route. Phil Trans R Soc Lond A, 1988, 327: 287–305

    Article  Google Scholar 

  31. Chang C F. Characteristics of Tethys and Qinghai-Xizang collision orogenic belt. In: Xu G Z, Chang C F, eds. Tectonic of Continental Lithosphere and Resources (in Chinese). Beijing: Ocean Press, 1992. 1–18

    Google Scholar 

  32. Wang H G. Tectonic Deformation and Evolution of Taniantaweng Mountains, Tibet (in Chinese). Beijing: Geological Publishing House, 1996. 1–80

    Google Scholar 

  33. Shen Q H. The recommendation of a systematic list of mineral abbreviations (in Chinese). Acta Petrol Mineral, 2009, 28: 495–500

    Google Scholar 

  34. O’Brien P J. Garnet zoning and reaction texture in overprinted eclogites, Bohemian Massif, European Variscides: A record of their thermal history during exhumation. Lithos, 1997, 41: 119–133

    Article  Google Scholar 

  35. Messiga B, Bettini E. Reactions behavior during kelyphite and symplectite formation: A case study of mafic granulites and eclogites from the Bohemian Massif. Eur J Mineral, 1990, 2: 125–144

    Google Scholar 

  36. Thost D E, Hensen B J, Motoyoshi Y. Two-stage decompression in garnet-bearing mafic granulite from Sostrene Island, Prydz Bay, East Antartica. J Metamorph Geol, 1991, 9: 245–256

    Article  Google Scholar 

  37. Haissen F, Garcia-Casco A, Torres-Roldan R, et al. Decompression reactions and P-T conditions in high-pressure granulites from Casares-Los Reales units of the Betic-Rif belt (S Spain and N Morocco). J Afr Earth Sci, 2004, 39: 375–383

    Article  Google Scholar 

  38. Johansson L, Möller C. Formation of sapphirine during retrogression of a basic high-pressure granulite, Roan, Western Gneiss Region, Norway. Contrib Mineral Petrol, 1986, 94: 29–41

    Article  Google Scholar 

  39. Harley S L. The origins of granulites: A metamorphic perspective. Geol Mag, 1989, 126: 215–247

    Article  Google Scholar 

  40. Osanai Y, Sajeev K, Owada M, et al. Metamorphic evolution of high-pressure and ultrahigh-temperature granulites from the Highland Complex, Sri Lanka. J Asian Earth Sci, 2006, 28: 20–37

    Article  Google Scholar 

  41. Mengel F, Rivers T. Decompressing reactions and P-T conditions in high-grade rocks. Northern Labrador. P-T-t paths from individual samples and implications for Early Proterozoic tectonic evolution. J Petrol, 1991, 32: 139–167

    Google Scholar 

  42. Kumar G R R, Chacko T. Geothermobarometry of mafic granulites and metapelite from the Palghat Gap, South India: Petrological evidence for isothermal uplift and rapid cooling. J Metamorph Geol, 1994, 12: 479–492

    Article  Google Scholar 

  43. Lu Y F. GeoKit: A geochemical toolkit for Microsoft Excel (in Chinese). Geochim, 2004, 33: 459–464

    Google Scholar 

  44. Pal S, Bose S. Mineral reactions and geothermobarometry in a suite of granulite facies rocks from Paderu, Eastern Ghats granulite belt: A reappraisal of the P-T trajectory. Proc lndian Acad Sci-Earth Planet Sci, 1997, 106: 77–89

    Google Scholar 

  45. Green D H, Ringwood A E. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim Cosmochim Acta, 1967, 31: 767–833

    Article  Google Scholar 

  46. Ellis D J, Green E H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol, 1979, 71: 13–22

    Article  Google Scholar 

  47. Krogh E J. The garnet-clinopyroxene Fe-Mg geothermometer: A reinterpretation of existing experimental data. Contrib Mineral Petrol, 1988, 99: 44–48

    Article  Google Scholar 

  48. Newton R C, Perkins D. Thermodynamic calibration of geobarometers based on the assemblages garnet-orthopyroxene (clinopyroxene)-plagioclase-quartz. Am Mineral, 1982, 67: 203–222

    Google Scholar 

  49. Lal R K. Internally consistent recalibrations of mineral equilibria for geothermobarometry involving garnet-orthopyroxene-plagioclasequartz assemblages and their application to the South Indian granulites. J Metamorph Geol, 1993, 11: 855–866

    Article  Google Scholar 

  50. Bhattacharya A, Krishnakumar K R, Raith M, et al. An improved set of a-X parameters for Fe-Mg-Ca garnets and refinements of the orthopyroxene-garnet thermometer and orthopyroxene-garnet-plagioclase-quartz barometer. J Petrol, 1991, 32: 629–656

    Google Scholar 

  51. Kohn M J, Spear F S. Two new barometers for garnet amphibolites with applications to southeastern-Vermont. Am Mineral, 1990, 75: 89–96

    Google Scholar 

  52. Holland T J B, Blundy J D. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol, 1994, 116: 433–447

    Article  Google Scholar 

  53. Rözler J, Romer R L, Budzinski H, et al. Ultrahigh-temperature high-pressure granulites from Tirschheim, Saxon Granulite Massif, Germany: P-T-t path and geotectonic implications. Eur J Mineral, 2004, 16: 917–937

    Article  Google Scholar 

  54. Zhang Z M, Zheng L L, Wang J L, et al. Garnet pyroxenite in the Nam jagbarwa group-complex in the eastern Himalayan tectonic syntaxis, Tibet, China: Evidence for subduction of the Indian continent beneath the Eurasian plate at 80–100 km depth (in Chinese). Geol bull Chin, 2007, 26: 1–12

    Article  Google Scholar 

  55. Zhao G C, Cawood P A, Wilde S A, et al. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and tectonic implications. J Petrol, 2001, 42: 1141–1170

    Article  Google Scholar 

  56. Li X C, Yu J H, Sang L Q, et al. Granulite facies metamorphism of the Olkhon terrane in southern Siberian Craton and tectonic significance (in Chinese). Acta Petrol Sin, 2009, 25: 3330–3340

    Google Scholar 

  57. Rözler J, Romer R L. P-T-t evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany. Part I: Petrology. J Petrol, 2001, 42: 1995–2013

    Google Scholar 

  58. Spear F S. Metamorphic phase equilibria and pressure-temperature-time paths. Washington D C: Mineralogical Society of America, 1993. 393–446

    Google Scholar 

  59. England C, Thompson A B. Pressure-temperature-time paths of regional metamorphism: I. Heat transfer during the evolution of regions of thickened continental crust. J Petrol, 1984, 25: 894–928

    Google Scholar 

  60. Thompson A B, England C. Pressure-temperature-time paths of regional metamorphism: II. Their influences and interpretation using mineral assemblages in metamorphic rocks. J Petrol, 1984, 25: 929–955

    Google Scholar 

  61. Brown M. P-T-t evolution of mountain belts and the causes of regional metamorphism. J Geol Soc Lond, 1993, 150: 227–241

    Article  Google Scholar 

  62. England P C, Richardson S W. The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc Lond, 1977, 34: 3201–3213

    Google Scholar 

  63. Oxburgh E R. Some thermal aspects of granulite history. In: Vielzeuf D, Vidal P H, eds. Granulites and Crustal Evolution. Dordrecht: Kluwer Academic Publishers, 1989. 569–580

    Google Scholar 

  64. Smith A B, Xu J T. Paleontology of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond A, 1988, 327: 53–1

    Google Scholar 

  65. Leeder M R, Smith A B, Yin J X. Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse. Phil Trans R Soc Lond A, 1988, 327: 107–143

    Article  Google Scholar 

  66. Zhou M F, Malpas J, Robinson P T. The dynamothermal aureole of the Donqiao ophiolite (northern Tibet). Can J Earth Sci, 1997, 34: 59–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RenDeng Shi.

About this article

Cite this article

Zhang, X., Shi, R., Huang, Q. et al. Finding of high-pressure mafic granulites in the Amdo basement, central Tibet. Chin. Sci. Bull. 55, 3694–3702 (2010). https://doi.org/10.1007/s11434-010-4127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4127-y

Keywords

Navigation