Skip to main content
Log in

Advances in the hyperlens

  • Review
  • Special Topic Plasmonics
  • Published:
Chinese Science Bulletin

Abstract

As a superlens to overcome the well-known diffraction limit, the hyperlens has received much attention due to its super resolving power and magnifying capabilities. In this article, we review the recent developments, including theoretical and experimental studies on the hyperlens. We also discuss its limitations and potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbe E. Beitrage zur Theorie des mikroskops und der mikroskopischen wahrnehmung. Arch Mikroskop Anat, 1873, 9: 413–420

    Article  Google Scholar 

  2. Rayleigh L. On the theory of optical images with special reference to the optical microscope. Phil Mag, 1896, 5: 167–195

    Google Scholar 

  3. Kino G. The solid immersion lens. Proc SPIE, 1999, 3740: 2–6

    Article  Google Scholar 

  4. Rothschild M, Bloomstein T M, Kunz R R, et al. Liquid immersion lithography: Why, how, and when? J Vac Sci Technol B, 2004, 22: 2877–2881

    Article  Google Scholar 

  5. Veselago V G. The electrodynamics of substances with simultaneously negative values of ɛ and µ. Sov Phys Usp, 1968, 10: 509–514

    Article  Google Scholar 

  6. Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85: 3966–3969

    Article  Google Scholar 

  7. Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308: 534–537

    Article  Google Scholar 

  8. Taubner T, Korobkin D, Urzhumov Y, et al. Near-field microscopy through a SiC superlens. Science, 2006, 313: 1595

    Article  Google Scholar 

  9. Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys Rev B, 2005, 74: 075103

    Article  Google Scholar 

  10. Smolyaninov I, Hung Y, Davis C. Magnifying superlens in the visible frequency range. Science, 2007, 315: 1699–1701

    Article  Google Scholar 

  11. Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nat Mater, 2008, 7: 435–441

    Article  Google Scholar 

  12. Jacob Z, Alekseyev L, Narimanov E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt Express, 2006, 14: 8247–8256

    Article  Google Scholar 

  13. Liu Z, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315: 1686

    Article  Google Scholar 

  14. Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305: 788–792

    Article  Google Scholar 

  15. Vedantam S, Lee H, Tang J, et al. A plasmonic dimple lens for nanoscale focusing of light. Nano Lett, 2009, 9: 3447–3452

    Article  Google Scholar 

  16. Verslegers L, Catrysse P B, Yu Z, et al. Deep-sub-wavelength focusing and steering of light in an aperiodic metallic waveguide array. Phys Rev Lett, 2009, 103: 033902

    Article  Google Scholar 

  17. Ma C, Liu Z. Focusing light into deep sub-wavelength using metamaterial immersion lenses. Opt Express 2010, 18: 4838–4844

    Article  Google Scholar 

  18. Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys Rev B, 2006, 74: 075103

    Article  Google Scholar 

  19. Li J, Fok L, Yin X, et al. Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater, 2009, 8: 931–934

    Article  Google Scholar 

  20. Jacob Z, Alekseyev L, Narimanov E. Semiclassical theory of the hyperlens. J Opt Soc Am A, 2007, 24: A52–A59

    Article  Google Scholar 

  21. Smith D R, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett, 2003, 90: 077405

    Article  Google Scholar 

  22. Kildishev A, Narimanov E. Impedance-matched hyperlens. Opt Lett, 2007, 32: 3432–3434

    Article  Google Scholar 

  23. Driscoll T, Basov D N, Starr A F, et al. Free-space microwave focusing by a negative-index gradient lens. Appl Phys Lett, 2006, 88: 081101

    Article  Google Scholar 

  24. Han S, Xiong Y, Genov D, et al. Ray optics at a deep-sub-wavelength scale: A transformation optics approach. Nano Lett, 2008, 8: 4243–4247

    Article  Google Scholar 

  25. Kildishev A, Shalaev V. Engineering space for light via transformation optics. Opt Lett, 2008, 33: 43–45

    Article  Google Scholar 

  26. Xiong Y, Liu Z, Zhang X. A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl Phys Lett, 2009, 94: 203108

    Article  Google Scholar 

  27. Smith E, Liu Z, Mei Y, et al. System investigation of a rolled-up metamaterial optical hyperlens structure. Appl Phys Lett, 2009, 95: 083104

    Article  Google Scholar 

  28. Smith E J, Liu Z, Mei Y F, et al. Erratum: System investigation of a rolled-up metamaterial optical hyperlens structure. Appl Phys Lett, 2010, 96: 019902

    Article  Google Scholar 

  29. Schwaiger S, Bröll M, Krohn A, et al. Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime. Phys Rev Lett, 2009, 102: 163903

    Article  Google Scholar 

  30. Zhang S, Yin L, Fang N. Focusing ultrasound with an acoustic metamaterial network. Phys Rev Lett, 2009, 102: 194301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhaoWei Liu.

About this article

Cite this article

Ma, C., Aguinaldo, R. & Liu, Z. Advances in the hyperlens. Chin. Sci. Bull. 55, 2618–2624 (2010). https://doi.org/10.1007/s11434-010-4014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4014-6

Keywords

Navigation