Skip to main content
Log in

Polaron-pair-dependent equivalent circuit parameters of organic solar cells based on CuPc and C60

  • Articles
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

We present the current-voltage characteristics of organic solar cells based on single and double heterojunction of copper phthalocyanine (CuPc) and C60 by introducing a constant J P instead of photo-current density J ph to represent the density of polaron-pairs generated from excitons at D/A interface. A diode D ext models polaron-pair dissociation, and a diode D rec stands for loss due to polaron-pair recombination. The photovoltaic response under AM 1.5 solar illumination at an intensity of 100 mW/cm2 is parameterized and modeled using the improved equivalent circuit model developed for inorganic pn-junction solar cells. The instinct mechanisms including dissociation, recombination of polaron-pairs and charge carrier collection process are explained by introducing J ph/J P as the dissociation rate of polaron-pairs and |J|/J ph as charge carrier application efficiency ηCA. Especially, we reveal the optimization mechanism for the fill factor FF and series resistance R S of organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang C W. Two-layer organic photovoltaic cell. Appl Phys Lett, 1986, 48: 183–185

    Article  Google Scholar 

  2. Brabec C J, Sariciftci N S, Hummelen J C, et al. Plastic solar cells. Adv Funct Mater, 2001, 11: 15–26

    Article  Google Scholar 

  3. Peumans P, Yakimov A, Forrest S R, et al. Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys, 2003, 93: 3693–3723

    Article  Google Scholar 

  4. Peumans P, Bulovic V, Forrest S R, et al. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett, 2007, 88: 2650–2652

    Google Scholar 

  5. Xue J, Uchida S, Rand B P, et al. 4.2% efficient organic photovoltaic cells with low series resistances. Appl Phys Lett, 2004, 84: 3013–3015

    Article  Google Scholar 

  6. Hasobe T, Kashiwagi Y, Absalom M A, et al. Supramolecular phot ovoltaic cells using porphyrin dendrimers and fullerene. Adv Mater, 2004, 16: 975–979

    Article  Google Scholar 

  7. Drechsel J, Männig B, Gebeyehu D, et al. MIP-type organic solar cells incorporating phthalocyanine/fullerene mixed layers and doped wide-gap transport layers. Org Electron, 2004, 5: 175–186

    Article  Google Scholar 

  8. Heutz S, Sullivan P, Sanderson B M, et al. Influence of molecular architecture and intermixing on the photovoltaic, morphological and spectroscopic properties of CuPc-C60 heterojunctions. Sol Energy Mater Sol Cells, 2004, 83: 229–245

    Article  Google Scholar 

  9. Sullivan P, Heutz S, Schultes S M, et al. Influence of codeposition on the performance of CuPc-C60 heterojunction photovoltaic devices. Appl Phys Lett, 2004, 84: 1210–1212

    Article  Google Scholar 

  10. Xue J, Rand B P, Uchida S, et al. A hybird planar-mixed molecular heterojunction photovoltaic cell. Adv Mater, 2005, 17: 66–70

    Article  Google Scholar 

  11. Xue J, Uchida S, Rand B P, et al. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl Phys Lett, 2004, 85: 5757–5759

    Article  Google Scholar 

  12. Chan M Y, Lai S L, Fung M K, et al. Doping-induced efficiency enhancement in organic photovoltaic devices. Appl Phys Lett, 2007, 90: 023504

    Article  Google Scholar 

  13. Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007, 317: 222–225

    Article  Google Scholar 

  14. Xiao S Q, Li Y L, Li Y J, et al. Fullerene-based molecular triads with expanded Absorptions in the visible region: Synthesis and photovoltaic properties. J Phys Chem B, 2004, 108: 16677–16685

    Article  Google Scholar 

  15. Wemer A G, Li F, Hareda K, et al. Pyronin B as a donor for n-type doping of organic thin films. Appl Phys Lett, 2003, 82: 4495

    Article  Google Scholar 

  16. Hoppe H, Sariciftci N S. Organic solar cells: An overview. J Mater Res, 2004, 19: 1924–1925

    Article  Google Scholar 

  17. Yoo S, Domercq B, Kippelen B. Efficient thin-film organic solar cells based on pentacene-C60 heterojunctions. Appl Phys Lett, 2004, 85: 5427–5429

    Article  Google Scholar 

  18. Nunzi J M. Organic photovoltaic materials and devices. C R Phys, 2002, 3: 523–542

    Article  Google Scholar 

  19. Yoo S, Domercq B, Kippelen B. Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60. J Appl Phys, 2005, 97: 103706-1–9

    Google Scholar 

  20. Yoo S, Domercq B, Marder S R, et al. Modeling of organic photovoltaic cells with large fill factor and high efficiency. Proc SPIE, 2004, 5520: 110–117

    Article  Google Scholar 

  21. Mazhari B. An improved solar cell circuit model for organic solar cells. Sol Energy Mater Sol Cells, 2006, 90: 1021–1033

    Article  Google Scholar 

  22. Nguyen T P, Rendu P L, Dinh N N. Thermal and chemical treatment of ITO substrates for improvement of OLED performance. Synth Met, 2003, 138s: 229–232

    Article  Google Scholar 

  23. Wu C C, Wu C I, Sturm J C. Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. Appl Phys Lett, 1997, 70: 1348–1350

    Article  Google Scholar 

  24. Yu J S, Li W Z, Jiang Y D. Bright-yellow organic light-emitting device using novel silole derivative as emitter. Jpn J Appl Phys, 2007, 46: 31–33

    Article  Google Scholar 

  25. Kroon J M, Wienk M M, Verhees W J H, et al. Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells. Thin Solid Films, 2002, 223: 403–404

    Google Scholar 

  26. Schilinsky P, Waldauf C, Hauch J, et al. Simulation of light intensity dependent current characteristics of polymer solar cells. J Appl Phys 2004, 95: 2816–2819

    Article  Google Scholar 

  27. Aeronouts T, Greens W, Poortmans J, et al. Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor heterojunctions, Thin Solid Films, 2002, 403: 297–300

    Article  Google Scholar 

  28. Green M A. Solar cell fill factors: General graph and empirical expressions. Sol State Electron, 1981, 24: 788

    Article  Google Scholar 

  29. Mandoc M M, Veurman W, Koster L J A, et al. Origin of the reduced fill factor and photocurrent in MDMO-PPV:PCNEPV all-polymer solar cells. Adv Funct Mater, 2007, 17: 2167–2173

    Article  Google Scholar 

  30. Arkhipov V I, Heremans P, Bassler H. Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? Appl Phys Lett, 2003, 82: 4605–4607

    Article  Google Scholar 

  31. Morteani A C, Friend R H, Silva C. Endothermic exciplex-exciton energy-transfer in a blue-emitting polymeric heterojunction system. Chem Phys Lett, 2004, 391:81–84

    Article  Google Scholar 

  32. Morteani A C, Sreearunothai P, Herz L M, et al. Exciton regeneration at polymeric semiconductor heterojunctions. Phys Rev Lett, 2004, 92: 247402

    Article  Google Scholar 

  33. Morteani A C, Friend R H, Silva C, et al. Exciton trapping at heterojunctions in polymer blends. J Chem Phys, 2005, 122: 244906

    Article  Google Scholar 

  34. Mihailetchi V D, Koster L A A, Blom P W M, et al. Compositional dependence of the performance of poly(p-phenylene vinylene) Methanofullerene bulk-heterojunction solar cells. Adv Funct Mater, 2005, 15: 795–801

    Article  Google Scholar 

  35. Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells: Towards 10% energy conversion efficiency. Adv Mater, 2006, 18: 789–794

    Article  Google Scholar 

  36. Chen W B, Xiang H F, Xu Z X, et al. Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer. Appl Phys Lett, 2007, 91: 191109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunSheng Yu.

About this article

Cite this article

Huang, J., Yu, J., Lin, H. et al. Polaron-pair-dependent equivalent circuit parameters of organic solar cells based on CuPc and C60 . Chin. Sci. Bull. 55, 1317–1324 (2010). https://doi.org/10.1007/s11434-009-0338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0338-5

Keywords

Navigation