Skip to main content
Log in

Generation and application of human iPS cells

  • Review/Developmental Biology
  • Published:
Chinese Science Bulletin

Abstract

Human embryonic stem (ES) cells are capable of unlimited proliferation and maintenance of pluripotency in vitro; these properties may lead to potential applications in regenerative medicine. However, immune rejection hampers the allogenic application of human ES cells. Over-expression of several specific transcription factors has been used to reprogram human adult cells into induced pluripotent stem (iPS) cells, which are similar to hESCs in many aspects. The iPS technique makes it possible to produce patient-specific pluripotent stem cells for transplantation therapy without immune rejection. However, some challenges remain, including viral vector integration into the genome, the existence of exogenous oncogenic factors, and low induction efficiency. Here, we review recent advances in human iPS methodology, as well as remaining challenges and its potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282: 1145–1147

    Article  PubMed  CAS  Google Scholar 

  2. Zhan X, Dravid G, Ye Z, et al. Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet, 2004, 364: 163–171

    Article  PubMed  Google Scholar 

  3. Tian X, Woll P S, Morris J K, et al. Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells, 2006, 24: 1370–1380

    Article  PubMed  CAS  Google Scholar 

  4. Laflamme M A, Chen K Y, Naumova A V, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 2007, 25: 1015–1024

    Article  PubMed  CAS  Google Scholar 

  5. Ben-Hur T, Idelson M, Khaner H, et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cell, 2004, 22: 1246–1255

    Article  Google Scholar 

  6. Yan Y, Yang D, Zarnowska E D, et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cell, 2005, 23: 781–790

    Article  CAS  Google Scholar 

  7. Zhang S C, Wernig M, Duncan I D, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol, 2001, 19: 1129–1133

    Article  PubMed  CAS  Google Scholar 

  8. Campbell K H, McWhir J, Ritchie W A, et al. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380: 64–66

    Article  PubMed  CAS  Google Scholar 

  9. McGrath J, Solter D. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science, 1984, 226: 1317–1319

    Article  PubMed  CAS  Google Scholar 

  10. Rideout W M3rd, Hochedlinger K, Kyba M, et al. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell, 2002, 109: 17–27

    Article  PubMed  CAS  Google Scholar 

  11. Byrne J A, Pedersen D A, Clepper L L, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature, 2007, 450: 497–502

    Article  PubMed  CAS  Google Scholar 

  12. Tada M, Tada T, Lefebvre L, et al. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J, 1997, 16: 6510–6520

    Article  PubMed  CAS  Google Scholar 

  13. Cowan C A, Atienza J, Melton D A, et al. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005, 309: 1369–1373

    Article  PubMed  CAS  Google Scholar 

  14. Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 2007, 1: 39–49

    Article  PubMed  CAS  Google Scholar 

  15. Wakayama T, Perry A C, Zuccotti M, et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 1998, 394: 369–374

    Article  PubMed  CAS  Google Scholar 

  16. Wilmut I, Schnieke A E, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Clon Stem Cell, 2007, 9: 3–7

    Article  CAS  Google Scholar 

  17. Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature, 2006, 441: 1061–1067

    Article  PubMed  CAS  Google Scholar 

  18. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 2008, 132: 567–582

    Article  PubMed  CAS  Google Scholar 

  19. Chen L, Daley G Q. Molecular basis of pluripotency. Hum Mol Genet, 2008, 17: R23–R27

    Article  PubMed  CAS  Google Scholar 

  20. Wu Z, Zhang W, Chen G, et al. Combinatorial signals of activin/nodal and bone morphogenic protein regulate the early lineage segregation of human embryonic stem cells. J Biol Chem, 2008, 283: 24991–25002

    Article  PubMed  CAS  Google Scholar 

  21. Ohtsuka S, Dalton S. Molecular and biological properties of pluripotent embryonic stem cells. Gene Therapy, 2008, 15: 74–81

    Article  PubMed  CAS  Google Scholar 

  22. Xu R H, Sampsell-Barron T L, Gu F, et al. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 2008, 3: 196–206

    Article  PubMed  CAS  Google Scholar 

  23. Xu R H, Peck R M, Li D S, et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Method, 2005, 2: 185–190

    Article  CAS  Google Scholar 

  24. Cai L, Ye Z, Zhou B Y, et al. Promoting human embryonic stem cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Res, 2007, 17: 62–72

    Article  PubMed  CAS  Google Scholar 

  25. Dravid G, Ye Z, Hammond H, et al. Defining the role of Wnt/betacatenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cell, 2005, 23: 1489–1501

    Article  CAS  Google Scholar 

  26. Xu R H, Chen X, Li D S, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol, 2002, 20: 1261–1264

    Article  PubMed  CAS  Google Scholar 

  27. Chen G, Ye Z, Yu X, et al. Trophoblast differentiation defect in human embryonic stem cells lacking PIG-A and GPI-anchored cell-surface proteins. Cell Stem Cell, 2008, 2: 345–355

    Article  PubMed  CAS  Google Scholar 

  28. Boyer L A, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 2006, 441: 349–353

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126: 663–676

    Article  PubMed  CAS  Google Scholar 

  30. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007, 1: 55–70

    Article  PubMed  CAS  Google Scholar 

  31. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448: 313–317

    Article  PubMed  CAS  Google Scholar 

  32. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448: 318–324

    Article  PubMed  CAS  Google Scholar 

  33. Qin D, Li W, Zhang J, et al. Direct generation of ES-like cells from unmodified mouse embryonic fibroblasts by Oct4/Sox2/Myc/Klf4. Cell Res, 2007, 17: 959–962

    Article  PubMed  CAS  Google Scholar 

  34. Lowry W E, Richter L, Yachechko R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA, 2008, 105: 2883–2888

    Article  PubMed  CAS  Google Scholar 

  35. Park I H, Zhao R, West J A, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451: 141–146

    Article  PubMed  CAS  Google Scholar 

  36. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131: 861–872

    Article  PubMed  CAS  Google Scholar 

  37. Yu J, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318: 1917–1920

    Article  PubMed  CAS  Google Scholar 

  38. Liao J, Wu Z, Wang Y, et al. Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res, 2008, 18: 600–603

    Article  PubMed  CAS  Google Scholar 

  39. Mali P, Ye Z, Hommond H H, et al. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cell, 2008, 26: 1998–2005

    Article  CAS  Google Scholar 

  40. Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol, 2008, 26: 795–797

    Article  PubMed  CAS  Google Scholar 

  41. Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol, 2008, doi: 10.1038/nbt.1502

  42. Shi Y, Do J T, Desponts C, et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2008, 2: 525–528

    Article  PubMed  CAS  Google Scholar 

  43. Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration. Science, 2008, 322(5903): 945–949; doi: 10.1126/science.1162494

    Article  PubMed  CAS  Google Scholar 

  44. Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 2007, 318: 1920–1923

    Article  PubMed  CAS  Google Scholar 

  45. Wernig M, Zhao J P, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA, 2008, 105: 5856–5861

    Article  PubMed  CAS  Google Scholar 

  46. Dimos J T, Rodolfa K T, Niakan K K, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 2008, 321(5893): 1218–1221

    Article  PubMed  CAS  Google Scholar 

  47. Park I H, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell, 2008, 134(5): 877–886

    Article  PubMed  CAS  Google Scholar 

  48. Zaehres H, Scholer H R. Induction of pluripotency: From mouse to human. Cell, 2007, 131: 834–835

    Article  PubMed  CAS  Google Scholar 

  49. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol, 2008, 26: 101–106

    Article  PubMed  CAS  Google Scholar 

  50. Wernig M, Meissner A, Cassady J P, et al. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2008, 2: 10–12

    Article  PubMed  CAS  Google Scholar 

  51. Kim J B, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 2008, 454: 646–650

    Article  PubMed  CAS  Google Scholar 

  52. Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 2008, 322(5903): 949–953; doi: 10.1126/science.1164270

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xiao.

Additional information

Supported by the National Key Scientific Program (Grant Nos. 2007CB947960, 2007CB948003)

About this article

Cite this article

Cui, C., Rao, L., Cheng, L. et al. Generation and application of human iPS cells. Chin. Sci. Bull. 54, 9–13 (2009). https://doi.org/10.1007/s11434-008-0579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0579-8

Keywords

Navigation