Skip to main content
Log in

Evaluation of energy transfer and utilization efficiency of azo dye removal by different pulsed electrical discharge modes

  • Articles
  • Environmental Science
  • Published:
Chinese Science Bulletin

Abstract

The degradation of an azo dye, acid orange 7 (AO7), caused by different high voltage pulsed electrical discharge modes (spark, streamer and corona discharge) induced by the various initial conductivities was investigated. A new type of pulsed high voltage source with thyratron switch and Blumlein pulse forming net (BPFN) was used. The typical discharge waveforms of voltage, current, power, pulse energy and the pictures of spark, streamer and corona discharge modes were presented. The results indicated that pulsed electrical discharges led to complete decolorization and substantial decrease of the chemical oxygen demand (COD) of the dye solution. The main intermediate products were monitored by GC-MS. The discharge modes changed from spark to streamer and to corona discharge, and the streamer length decreased with the liquid conductivity increasing. At a constant input power, the peak voltage, peak current, peak power and energy per pulse of the three discharge modes ranked in the following order: spark > streamer > corona. The effective energy transfer efficiency of AO7 removal was higher for spark discharge (57.2%) than for streamer discharge (40.4%) and corona discharge (27.6%). Moreover, the energy utilization efficiency of AO7 removal for spark discharge was 1.035×109 mol/J, and for streamer and corona discharge they were 0.646×10−9 and 0.589×10−9 mol/J. Both the energy transfer efficiency and the energy utilization efficiency of spark discharge were the highest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang X W, Zhou M H, Lei L C. TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon, 2006, 44: 325–333

    Article  CAS  Google Scholar 

  2. Zhou M H, Dai Q Z, Lei L C, et al. Long life modified lead dioxide anode for organic wastewater treatment: Electrochemical characteristics and degradation mechanism. Environ Sci Technol, 2005, 39: 363–370

    Article  PubMed  CAS  Google Scholar 

  3. Du Y X, Zhou M H, Lei L C. Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. J Hazard Mater, 2006, 136: 859–865

    Article  PubMed  CAS  Google Scholar 

  4. Kishimoto N, Morita Y, Tsuno H, et al. Advanced oxidation effect of ozonation combined with electrolysis. Water Res, 2005, 39: 4661–4672

    Article  PubMed  CAS  Google Scholar 

  5. Qamar M, Muneer M, Bahnemann D. Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. J Environ Manage, 2006, 80: 99–106

    Article  PubMed  CAS  Google Scholar 

  6. Sharma A K, Locke B R, Arce P, et al. A preliminary study of pulsed streamer corona discharge for the degradation of phenol in aqueous solutions. Hazard Waste Hazard, 1993, 10: 209–219

    CAS  Google Scholar 

  7. Joshi A A, Locke B R, Arce P, et al. Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater, 1995, 41: 3–30

    Article  CAS  Google Scholar 

  8. Willberg D M, Lang P S, Hochemer R H, et al. Degradation of 4-chlorophenol, 3,4-dichloroaniline and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor. Environ Sci Technol, 1996, 30: 2526–2534

    Article  CAS  Google Scholar 

  9. Lang P S, Ching W K, Willberg D M, et al. Oxidative degradation of 2,4,6-Trinitrotoluene by ozone in an electrohydraulic discharge reactor. Environ Sci Technol, 1998, 32: 3142–3148

    Article  CAS  Google Scholar 

  10. Sunka P, Babicky V, Clupek M, et al. Generation of chemically active species by electrical discharges in water. Plasma Sources Sci Technol, 1999, 8: 258–265

    Article  CAS  Google Scholar 

  11. Hoeben W F L M, Veldhuizen E M, Rutgers W R, et al. The degradation of aqueous phenol solutions by pulsed positive corona discharges. Plasma Sources Sci Technol, 2000, 9: 361–369

    Article  CAS  Google Scholar 

  12. Sun B, Sato M, Clements J S. Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution. Environ Sci Technol, 2000, 34: 509–513

    Article  CAS  Google Scholar 

  13. Wen Y Z, Jiang X Z. Pulsed corona discharge-induced reaction of acetophenone in water. Plasma Chem Plasma Process, 2000, 21: 345–354

    Article  Google Scholar 

  14. Chen Y S, Zhang X S, Dai Y C, et al. Pulsed high-voltage discharge plasma for degradation of phenol in aqueous solution. Sep Purif Technol, 2004, 34: 5–12

    Article  CAS  Google Scholar 

  15. Sano N, Fujimoto T, Kawashima T, et al. Influence of dissolved inorganic additives on decomposition of phenol and acetic acid in water by direct contact of gas corona discharge. Sep Purif Technol, 2004, 37: 169–175

    Article  CAS  Google Scholar 

  16. Locke B R, Sato M, Sunka P, et al. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind Eng Chem Res, 2006, 45: 882–905

    Article  CAS  Google Scholar 

  17. Malik M A, Ubaid-ur-Rehman, Ghaffar A, et al. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water. Plasma Sources Sci Technol, 2002, 11: 236–240

    Article  CAS  Google Scholar 

  18. Gao J Z, Wang X Y, Hu Z G, et al. Plasma degradation of dyes in water with contact glow discharge electrolysis. Water Res, 2003, 37: 267–272

    Article  PubMed  CAS  Google Scholar 

  19. Sugiarto A T, Ito S, Ohshima T, et al. Oxidative decoloration of dyes by pulsed discharge plasma in water. J Electrost, 2003, 58: 135–145

    Article  CAS  Google Scholar 

  20. Yang B, Lei L C, Zhou M H. Synergistic effects of liquid and gas phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen. Chemosphere, 2005, 60: 405–411

    Article  PubMed  CAS  Google Scholar 

  21. Wang H J, Li J, Quan X. Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsed corona discharge system in water. J Electrost, 2006, 64: 416–421

    Article  CAS  Google Scholar 

  22. Clements J S, Sato M, Davis R H. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high voltage discharge in water. IEEE Trans Ind Appl, 1987, IA-23: 224–235

    Article  CAS  Google Scholar 

  23. Kuo S P, Bivolaru D. Electric discharge in the presence of supersonic shocks. Phys Lett A, 2003, 313: 101–105

    Article  CAS  Google Scholar 

  24. Robinson J W, Ham M, Balater A N. Ultraviolet radiation from electronical discharges in water. J Appl Phys, 1973, 44: 72–76

    Article  CAS  Google Scholar 

  25. Sun B, Sato M, Clements J S. Optical study of active species produced by a pulsed streamer corona discharge in water. J Electrost, 1997, 39: 189–202

    Article  CAS  Google Scholar 

  26. Grymonpré D R, Finney W C, Clark R J, et al. Suspended activated carbon particles and ozone formation in aqueous-phase pulsed corona discharge reactors. Ind Eng Chem Res, 2003, 42: 5117–5134

    Article  Google Scholar 

  27. Piskarev I M, Rylova A E, Sevast’yanov A I. Formation of ozone and hydrogen peroxide during an electrical discharge in the solution-gas system. Russ J Electrochem, 1996, 32: 827–829

    CAS  Google Scholar 

  28. Sato M, Ohgiyama T, Clements J S. Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water. IEEE Trans Ind Appl, 1996, 32: 106–112

    Article  CAS  Google Scholar 

  29. Ono R, Oda T. Measurement of hydroxyl radicals in pulsed corona discharge. J Electrost, 2002, 55: 333–342

    Article  CAS  Google Scholar 

  30. Lukes P, Appleton A T, Locke B R. Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors. IEEE Trans Ind Appl, 2004, 40: 60–67

    Article  CAS  Google Scholar 

  31. Hao X L, Zhou M H, Zhang Y, et al. Enhanced degradation of organic pollutant 4-chlorophenol in water by non-thermal plasma process with TiO2. Plasma Chem Plasma Process, 2006, 26: 455–468

    Article  CAS  Google Scholar 

  32. Zhang Y, Zhou M H, Hao X L, et al. Degradation mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor by pulsed high voltage system with oxygen or nitrogen bubbling. Chemosphere, 2007, 67: 702–711

    Article  PubMed  CAS  Google Scholar 

  33. Lei L C, Hao X L, Zhang Y, et al. Wastewater treatment using a heterogeneous magnetic (Fe3O4) non-thermal plasma process. Plasma Process Polym, 2007, 4: 455–462

    Article  CAS  Google Scholar 

  34. Yan K, Hui H, Cui M, et al. Corona induced non-thermal plasmas: Fundamental study and industrial applications. J Electrost, 1998, 44: 17–39

    Article  CAS  Google Scholar 

  35. Bessekhouad Y, Chaoui N, Trzpit M, et al. UV-vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension. J Photoch Photobio A, 2006, 183: 218–224

    Article  CAS  Google Scholar 

  36. Xiong Y, Strunk P J, Xia H Y, et al. Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode. Water Res, 2001, 35: 4226–4230

    Article  PubMed  CAS  Google Scholar 

  37. Kawashima N, Fujimoto N, Meguro K. Determination of critical micelle concentration of several nonionic surfactants by azo-hydrazone tautomerism of anionic dye. J Colloid Interf Sci, 1985, 103: 459–465

    Article  CAS  Google Scholar 

  38. Yan K, van Heesch E J M, Pemen A J M, et al. A high-voltage pulse generator for corona plasma generation. IEEE Trans Ind Appl, 2002, 38: 866–872

    Article  CAS  Google Scholar 

  39. Yan K, van Heesch E J M, van Veldhuizen E M, et al. Evaluation of pulsed power supply for producing non-thermal plasma by using positive pulsed streamer corona. J Adv Oxid Technol, 1999, 4: 312–318

    CAS  Google Scholar 

  40. Rea M, Yan K. Evaluation of pulse voltage generators. IEEE Trans Ind Appl, 1995, 31: 507–512

    Article  Google Scholar 

  41. Yan K, van Heesch E J M, Pemen A J M, et al. From chemical kinetics to streamer corona reactor and voltage pulse generator. Plasma Chem Plasma Process, 2001, 21: 107–137

    Article  CAS  Google Scholar 

  42. Liu C J, Zou J J, Yu K L, et al. Plasma application for more environmentally friendly catalyst preparation. Pure Appl Chem, 2006, 78: 1227–1238

    Article  CAS  Google Scholar 

  43. Zou J J, Zhang Y P, Liu C J, et al. Hydrogen production from dimethyl ether using corona discharge plasma. J Power Sources, 2007, 163: 653–657

    Article  CAS  Google Scholar 

  44. Zhang Q H, Barbosa-Cánovas G V, Swanson B G. Engineering aspects of pulsed electrical field pasteurization. J Food Eng, 1995, 25: 261–281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LeCheng Lei.

Additional information

Supported by National Natural Science Foundation of China (Grant Nos. 20336030, 90610005, 20576120 and U0633003), and Distinguished Youth Foundation of Zhejiang Province (Grant No. RC 02060)

About this article

Cite this article

Shen, Y., Lei, L. & Zhang, X. Evaluation of energy transfer and utilization efficiency of azo dye removal by different pulsed electrical discharge modes. Chin. Sci. Bull. 53, 1824–1834 (2008). https://doi.org/10.1007/s11434-008-0251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0251-3

Keywords

Navigation