Skip to main content
Log in

Reduced function and disassembled microtubules of cultured cardiomyocytes in spaceflight

  • Articles
  • Cell Biology
  • Published:
Chinese Science Bulletin

Abstract

Lack of gravity during spaceflight has profound effects on cardiovascular system, but little is known about how the cardiomyocytes respond to microgravity. In the present study, the effects of spaceflight on the structure and function of cultured cardiomyocytes were reported. The primary cultures of neonatal rat cardiomyocytes were carried on Shenzhou-6 spacecraft and activated at 4 h in orbit. 8 samples were fixed respectively at 4, 48 and 96 h after launching for immunofluorescence of cytoskeleton, and 2 samples remained unfixed to analyze contractile and secretory functions of the cultures. Ground samples were treated in our laboratory in parallel. After 115 h spaceflight, video recordings displayed that the number of spontaneous beating sites in flown samples decreased significantly, and the cells in the beating aggregate contracted in fast frequency without synchrony. Radioimmunoassay of the medium showed that the atrial natriuretic peptide secreted from flown cells reduced by 59.6%. Confocal images demonstrated the time-dependant disassembly of mirotubules versus unchanged distribution and organization of microfilaments. In conclusion, above results indicate reduced function and disorganized cytoskeleton of cardiomyocytes in spaceflight, which might provide some cellular basis for further investigations to probe into the mechanisms underlying space cardiovascular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chruchill S E, ed. Fundamentals of Space Life Sciences. Florida: Krieger Publishing Company, 1997. 41–63

    Google Scholar 

  2. Philpott D E, Popova I A, Kato K, et al. Morphological and biochemical examination of Cosmos 1887 rat heart tissue Part I: Ultrastructure. FASEB J, 1990, 4(1): 73–78

    PubMed  CAS  Google Scholar 

  3. Goldstein M A, Edwards R J, Schroeter J P. Cardiac morphology after conditions of microgravity during COSMOS 2044. J Appl Physiol, 1992, 73(Suppl 2): 94S–100S

    PubMed  CAS  Google Scholar 

  4. Thomason D B, Morrison P R, Oganov V, et al. Altered actin and myosin expression in muscle during exposure to microgravity. J Appl Physiol, 1992, 73(Suppl2): 90S–93S

    PubMed  CAS  Google Scholar 

  5. Lambert C A, Nusgens B V, Lapiere Ch M. Mechano-sensing and mechano-reaction of soft connective tissue cells. Adv Space Res, 1998, 21(8–9): 1081–1091

    Article  PubMed  Google Scholar 

  6. Ingber D E. How cells (might) sense microgravity. FASEB J, 1999, 13(Suppl): S3–S15

    PubMed  CAS  Google Scholar 

  7. Gruener R, Roberts R, Roistetter R. Reduced receptor aggregation and altered cytoskeleton in cultured myocytes after spacflight. Biol Sci Space, 1994, 8(2): 79–93

    Article  PubMed  CAS  Google Scholar 

  8. Guignandon A, Lafage-Proust M H, Usson Y, et al. Cell cycling determines integrin-mediated adhesion in osteoblastic ROS17/2.8 cells exposed to space-related conditions. FASEB J, 2001, 15(11): 2036–2038

    PubMed  CAS  Google Scholar 

  9. Hughes-Fulford M, Lewis M L. Effects of microgravity on osteoblast growth activation. Exp Cell Res. 1996, 224(1): 103–109

    Article  PubMed  CAS  Google Scholar 

  10. Schatten H, Lewis M L, Chakrabarti A. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut, 2001, 49(3–10): 399–418

    Article  PubMed  CAS  Google Scholar 

  11. Calaghan S C, Le Guennec J Y, White E. Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog Biophys Mol Biol, 2004, 84(1): 29–59

    Article  PubMed  CAS  Google Scholar 

  12. Hori M, Sato H, Kitakaze M, et al. β-adrenergic stimulation disassembles microtubules in neonatal rat cultured cardiomyocytes through intracellular Ca2+ Overload. Circ Res, 1994, 75(2): 324–334

    PubMed  CAS  Google Scholar 

  13. McGrath M F, de Bold M L, de Bold A J. The endocrine function of the heart. Trends Endocrinol Metab, 2005, 16(10): 469–477

    Article  PubMed  CAS  Google Scholar 

  14. He X L, Dukkipati A, Garcia K C. Structural determinants of natriuretic peptide receptor specificity and degeneracy. J Mol Biol, 2006, 361(4): 698–714

    Article  PubMed  CAS  Google Scholar 

  15. Cameron V A, Ellmers L J. Minireview: Natriuretic peptides during development of the fetal heart and circulation. Endocrinology, 2003, 144(6): 2191–2194

    Article  PubMed  CAS  Google Scholar 

  16. Xi Y T, Wu G R, Bai X J, et al. Mechanical stretch-induced hypertrophy of neonatal rat ventricular myocytes is mediated by beta(1)-integrin-microtubule signaling pathways. Eur J Heart Fail, 2006, 8(1): 16–22

    Article  CAS  Google Scholar 

  17. Rubin J, Rubin C, Jacobs C R. Molecular pathways mediating mechanical signaling in bone. Gene, 2006, 15(367): 1–16

    Article  Google Scholar 

  18. Crawford-Young S J. Effects of microgravity on cell cytoskeleton and embryogenesis. Int J Dev Biol, 2006, 50(2–3): 183–191

    Article  PubMed  Google Scholar 

  19. Rosner H, Wassermann T, Moller W, et al. Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma, 2006, 229(2–4): 225–234

    Article  PubMed  CAS  Google Scholar 

  20. Dai Z, Li Y, Ding B, et al. Actin microfilaments participate in the regulation of the COL1A1 promoter activity in ROS17/2.8 cells under simulated microgravity. Adv Space Res, 2006, 38(6): 1159–1167

    Article  CAS  Google Scholar 

  21. Vassy J, Portet S, Beil M, et al. The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. FASEB J, 2001; 15(6): 1104–1106

    PubMed  CAS  Google Scholar 

  22. Xiong J H, Li Y H, Nie J L, et al. Effects of quercetin on the cytoskeleton of rat cardiac myocytes cultured in vitro under simulated microgravity. Acta Zool Sin (in Chinese), 2003, 49(1): 98–103

    CAS  Google Scholar 

  23. Papaseit C, Pochon N, Tabony J. Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci USA, 2000, 97(15): 8364–8368

    Article  PubMed  CAS  Google Scholar 

  24. Glade N, Beaugnon E, Tabony J. Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organisation. Biophys Chem, 2006, 121(1): 1–6

    Article  PubMed  CAS  Google Scholar 

  25. Birukova A A, Smurova K, Birukov K G, et al. Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of Rho-dependent mechanisms. J Cell Physiol, 2004, 201(1): 55–70

    Article  PubMed  CAS  Google Scholar 

  26. Kanthou C, Tozer G M. The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood, 2002, 99(6): 2060–2069

    Article  PubMed  CAS  Google Scholar 

  27. Ingber D E. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci, 2003, 116(Pt7): 1157–1173

    Article  PubMed  CAS  Google Scholar 

  28. Guo C, Ren H. Formins: Bringing new insights to the organization of actin cytoskeleton. Chin Sci Bull, 2006, 51(24): 2937–2943

    Article  CAS  Google Scholar 

  29. Polte T R, Eichler G S, Wang N, et al. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am J Physiol Cell Physiol, 2004, 286(3): C518–C528

    Article  PubMed  CAS  Google Scholar 

  30. Ren X D, Kiosses W B, Schwartz, M A. Regulation of the small GTP binding protein Rho by cell adhesion and the cytoskeleton. EMBO J, 1999, 18(3): 578–585

    Article  PubMed  CAS  Google Scholar 

  31. Henderson J R, Pomies P, Auffray C, et al. ALP and MLP distribution during myofibrillogenesis in cultured cardiomyocytes. Cell Motil Cytoskeleton, 2003, 54(3): 254–265

    Article  PubMed  CAS  Google Scholar 

  32. Nag A C, Lee M L, Sarkar F H. Remodelling of adult cardiac muscle cells in culture: dynamic process of disorganization and reorganization of myofibrils. J Muscle Res Cell Motil, 1996, 17(3): 313–334

    Article  PubMed  CAS  Google Scholar 

  33. Rothen-Rutishauser B M, Ehler E, Perriard E, et al. Different behaviour of the non-sarcomeric cytoskeleton in neonatal and adult rat cardiomyocytes. J Mol Cell Cardiol, 1998, 30(1): 19–31

    Article  PubMed  CAS  Google Scholar 

  34. Webster D R, Patrick D L. Beating rate of isolated neonatal cardiomyocytes in regulated by the stable microtubule subset. Am J Physiol Heart Circ Physiol, 2000, 278(5): H1653–H1661

    PubMed  CAS  Google Scholar 

  35. Cooper G. Cytoskeletal networks and the regulation of cardiac contractility: Microtubules, hypertrophy, and cardiac dysfunction. Am J Physiol Heart Circ Physiol, 2006, 291(3): H1003–H1014

    Article  PubMed  CAS  Google Scholar 

  36. Rogers S L, Gelfand VI. Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol, 2000, 12(1): 57–62

    Article  PubMed  CAS  Google Scholar 

  37. Chabin-Brion K, Marceiller J, Perez F, et al. The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell, 2001, 12(7): 2047–2060

    PubMed  CAS  Google Scholar 

  38. Lewis M L, Cubano L A, Zhao B, et al. cDNA microarray reveals altered cytoskeletal gene expression in space-flown leukemic T lymphocytes (Jurkat). FASEB J, 2001, 15(10): 1783–1785

    PubMed  CAS  Google Scholar 

  39. Zhang H, Yi X, Sun X, et al. Differential gene regulation by the SRC family of coactivators. Genes Dev, 2004, 18(14): 1753–1765

    Article  PubMed  CAS  Google Scholar 

  40. Zhang H, Sun L, Liang J, et al. The catalytic subunit of the proteasome is engaged in the entire process of estrogen receptor-regulated transcription. EMBO J, 2006, 25(18): 4223–4233

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingHui Li.

Additional information

Supported by China Manned Space Engineering Project, National Basic Research Program of China (Grant No. 2006CB705F04), National High Technology Research and Development Program of China (Grant No. 2002AA743051), National Natural Science Foundation of China (Grant No. 30370365), and Advanced Space Medico-Engineering Research Project of China (Grant No. SJ200508)

About this article

Cite this article

Yang, F., Li, Y., Ding, B. et al. Reduced function and disassembled microtubules of cultured cardiomyocytes in spaceflight. Chin. Sci. Bull. 53, 1185–1192 (2008). https://doi.org/10.1007/s11434-008-0167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0167-y

Key words

Navigation