Skip to main content
Log in

A theoretical study of the proton transfer process in the spin-forbidden reaction 1HNO(1A′) + OH3NO(3Σ) + H2O

  • Articles
  • Theoretical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

The spin-forbidden reaction 1HNO(1A′)+OH3NO(3Σ)+H2O has been extensively explored using various CASSCF active spaces with MP2 corrections in several basis sets. Natural bond orbital (NBO) analysis, together with the NBO energetic (deletion) analysis, indicates that the two isomers have nearly equal total energy and could compete with each other in the title reaction. More significantly, the singlet/triplet surface crossing regions have been examined and the spin-orbit coupling (SOC) and energetics have been computed. The computational results indicate that the SOC is very large at the crossing point T1/S0 trans (ca. 40.9 cm−1). Moreover, the T1/S0 trans has a low energy of 10.67 kcal/mol relative to that of trans-S0. Therefore, the surface crossing to the triplet state seems much more efficient at the T1/S0 trans region along the minimum energy path (MEP), However, The values of single (P 1 ISC) and double (P 2 ISC) passes estimated at T1/S0 trans show that the ISC occurs with a little probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong P Y, Hyun S J, Fukuto J M, et al. Reaction between S-nitrosothiols and thiols: Generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry, 1998, 37(16): 5362–5371

    Article  PubMed  CAS  Google Scholar 

  2. Adak S Q, Wang D J. Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. J Biol Chem, 2000, 275(10): 33554–33561

    Article  PubMed  CAS  Google Scholar 

  3. Miranda K M, Espey M G. Unique oxidative mechanisms for the reactive nitrogen oxide species, nitroxyl anion. J Biol Chem, 2001, 276(2): 1720–1727

    Article  PubMed  CAS  Google Scholar 

  4. Kirsch M, de Grooi H. Formation of peroxynitrite from reaction of nitroxyl anion with molecular oxygen. J. Biol Chem, 2002, 277(4): 13379–13388

    Article  PubMed  CAS  Google Scholar 

  5. Miranda M, Dutton A S, Ridnour L A, et al. Mechanism of aerobic decomposition of angeli’s salt (sodium trioxodinitrate) at physiological pH. J Am Chem Soc, 2005, 127(2): 722–731

    Article  PubMed  CAS  Google Scholar 

  6. Liochev S I, Fridovich I. Nitroxyl (NO): A substrate for superoxide dismutase. Arch Biochem Biophys, 2002, 402(2): 166–171

    Article  PubMed  CAS  Google Scholar 

  7. Shafirovich V, Lymar S V. Spin-forbidden deprotonation of aqueous nitroxyl (HNO). J Am Chem Soc, 2003, 125(21): 6547–6552

    Article  PubMed  CAS  Google Scholar 

  8. Armentrout P B. Chemistry of excited electronic states. Science, 1991, 251(11): 175–179

    Article  PubMed  CAS  Google Scholar 

  9. Yarkony D R. Current issues in nonadiabatic chemistry. J Phys Chem, 1996, 100(48): 18612–18628

    Article  CAS  Google Scholar 

  10. Schröder D, Schwarz H, Shaik S. In: Meunier B, ed. Metal-oxo and Metal-peroxo Species in Catalytic Oxidations. Berlin: Springer Verlag, 2000. 91, 123

    Chapter  Google Scholar 

  11. Glendening E D, Badenhoop J K, Reed A E, et al. NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001

    Google Scholar 

  12. Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03 (Revision-B.01). Pittsburgh PA: Gaussian Inc., 2003

    Google Scholar 

  13. Bearpark M J, Mebel M A. A direct method for the location of the lowest energy point on a potential surface crossing. Chem Phys Lett, 1994, 223(3): 269–274

    Article  CAS  Google Scholar 

  14. Ragazos I N, Robb M A, Bernardi M, et al. Optimization and characterization of the lowest energy point on a conical intersection using an MC-SCF Lagrangian. Chem Phys Lett, 1992, 197(3): 217–223

    Article  CAS  Google Scholar 

  15. Wilsey S, Bernardi F, Olivucci M, et al. The thermal decomposition of 1,2-dioxetane revisited. J Phys Chem A, 1999, 103(11): 1669–1677

    Article  CAS  Google Scholar 

  16. Celani P, Robb M A, Garavelli M, et al. Relaxation paths from a conical intersection: The mechanism of product formation in the cyclohexadiene/hexatriene photochemical interconversion. J Phys Chem A, 2002, 101(11): 2023–2032

    Google Scholar 

  17. Bader R F W. A quantum theory of molecular structure and its applications. Chem Rev, 1991, 91(5): 893–928

    Article  CAS  Google Scholar 

  18. Koseki S, Schmidt M W, Gordon M S. MCSCF/6-3 1 G(d.p) calculations of one-electron spin-orbit coupllng constants in diatomic molecules. J Phys Chem, 1992, 96(26): 10768–10772.

    Article  CAS  Google Scholar 

  19. Koseki S, Schmidt M W, Gordon M S. Main group effective nuclear charges for spin-orbit calculations. J Phys Chem, 1995, 99(34): 12764–12772

    Article  CAS  Google Scholar 

  20. Merchan M, Robb M A, Biancafort L. Triplet-state formation along the ultrafast decay of excited singlet cytosine. J Am Chem Soc, 2005, 127(6): 1820–1825

    Article  PubMed  CAS  Google Scholar 

  21. Danovich D, Shaik S. Spin-orbit coupling in the oxidative activation of H-H by FeO+: Selection rules and reactivity effects. J Am Chem Soc, 1997, 119(7): 1773–1786

    Article  CAS  Google Scholar 

  22. Rue C, Armentrout P B. Kinetic-energy dependence of competitive spin-allowed and spin-forbidden reactions: V++CS2. J Chem Phys, 1999, 110(16): 7858–7870

    Article  CAS  Google Scholar 

  23. Reed A L, Curtiss A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev, 1986, 88(6): 899–926

    Article  Google Scholar 

  24. Kovacs A, Szabo A, Nemcsok D, et al. Blue-shifting C-H···X (X = O, Halogen) hydrogen bonds in the dimers of formaldehyde derivatives. J Phys Chem A, 2002, 10(23): 5671–5678

    Article  Google Scholar 

  25. Sosa G L, Peruchena N M, Contreras R H, et al. Topological and NBO analysis of hydrogen bonding interactions involving C-H···O bonds. J Mol Struct (Theochem), 2002, 577(3): 219–228

    Article  CAS  Google Scholar 

  26. Turro N J. Modern Molecular Photochemistry. Sausalito, CA: University Science Books, 1991

    Google Scholar 

  27. Reguero M M, Olivucci F, Bernandi M A, et al. Excited-state potential surface crossings in acrolein: A model for understanding the photochemistry and photophysics of a,p-enones. J Am Chem Soc, 1994, 116(5): 2103–2114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LingLing Lü.

Additional information

Supported by the Natural Science Education Foundation of Gansu Province, China (Grant No. 021-22)

About this article

Cite this article

Lü, L., Wang, X., Wang, Y. et al. A theoretical study of the proton transfer process in the spin-forbidden reaction 1HNO(1A′) + OH3NO(3Σ) + H2O. Chin. Sci. Bull. 53, 1489–1496 (2008). https://doi.org/10.1007/s11434-008-0094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0094-y

Keywords

Navigation