Skip to main content
Log in

Study on peptide-peptide interaction using high-performance affinity chromatography and quartz crystal microbalance biosensor

  • Articles
  • Analytical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

The specific interaction between sense and antisense peptides was studied by high-performance affinity chromatography (HPAC) and quartz crystal microbalance (QCM) biosensor. Fragment 1–14 of human interferon-β (hIFN-β) was chosen as sense peptide and its three antisense peptides (AS-IFN 1, AS-IFN 2, and AS-IFN 3) were designed according to the degeneracy of genetic codes. The affinity column was prepared with sense peptide as ligand and the affinity chromatographic behavior was evaluated. Glu-substituted antisense peptide (AS-IFN 3) showed the strongest binding to immobilized sense peptide at pH 7.5. A quartz crystal microbalance-flow injection analysis (QCM-FIA) system was introduced to investigate the recognition process in real-time. The equilibrium dissociation constants between sense peptide and AS-IFN 1, AS-IFN 2 and AS-IFN 3 measured 2.08×10−4, 1.31×10−4 and 2.22×10−5 mol/L, respectively. The mechanism study indicated that the specific recognition between sense peptide and AS-IFN 3 was due to sequence-dependent and multi-modal affinity interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mekler L B. On the specific selective interaction between amino acid residues of polypeptide chain. Biofizika, 1969, 14: 581–584

    PubMed  CAS  Google Scholar 

  2. Bost K I, Smith E M, Blalock J E. Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. Proc Natl Acad Sci USA, 1985, 82(5): 1372–1375

    Article  PubMed  CAS  ADS  Google Scholar 

  3. Chaiken I. Interactions and uses of antisense peptides in affinity technology. J Chromatogr, 1992, 597(1–2): 29–36

    Article  PubMed  CAS  Google Scholar 

  4. Heal J R, Roberts G W, Raynes J G, et al. Specific interactions between sense and complementary peptides: the basis for the proteomic code. ChemBioChem, 2002a, 3(2–3): 136–151

    Article  PubMed  CAS  Google Scholar 

  5. Fassina G, Roller P P, Oison A D, et al. Recognition properties of peptides hydropathically complementary to residues 356–375 of the c-raf protein. J Biol Chem, 1989, 264(19): 11252–11257

    PubMed  CAS  Google Scholar 

  6. Lu F X, Aiyar N, Chaiken I M. Affinity capture of [Arg8] vasopressin-receptor complex using immobilized antisense peptide. Proc Natl Acad Sci USA, 1991, 88(9): 3642–3646

    Article  PubMed  CAS  ADS  Google Scholar 

  7. Scapol L, Rappuoli P, Viscomi G C. Purification of recombinant human interferon-β by immobilized antisense peptides. J Chromatogr, 1992, 600(2): 235–242

    Article  PubMed  CAS  Google Scholar 

  8. Davids J W, El-Bakri A, Heal J, et al. Design of antisense (complementary) peptides as selective inhibitors of cytokine interleukin I. Angew Chem Int Ed Engl, 1997, 36(9): 962–967

    Article  CAS  Google Scholar 

  9. Heal J R, Bino S, Ray K P, et al. A search within the IL-1 type I receptor reveals a peptide with hydropathic complementarity to the IL-1β trigger loop which binds to IL-1 and inhibits in vitro responses. Mol Immunol, 1999, 36(17): 1141–1148

    Article  PubMed  CAS  Google Scholar 

  10. Bhakoo A, Raynes J G, Heal J R, et al. De-novo design of complementary (antisense) peptide mini-receptor inhibitor of interleukin 18 (IL-18). Mol Immunol, 2004, 41(12): 1217–1224

    Article  PubMed  CAS  Google Scholar 

  11. Heal J R, Roberts G W, Christie G, et al. Inhibition of β-amyloid aggregation and neurotoxicity by complementary (antisense) peptides. ChemBioChem, 2002b, 3(1): 86–92

    Article  CAS  Google Scholar 

  12. Zhao R, Fang C L, Yu X, et al. Screening of inhibitors for influenza A virus using high-performance affinity chromatography and combinatorial peptide libraries. J Chromatogr A, 2005, 1064(1): 59–66

    Article  PubMed  CAS  Google Scholar 

  13. Zhao R, Yu X, Liu H, et al. Study on the degeneracy of antisense peptides using affinity chromatography. J Chromatogr A, 2001, 913(1–2): 421–428

    Article  PubMed  CAS  Google Scholar 

  14. Liu T, Tang J, Han M, et al. Surface modification of nanogold particles in DNA detection with quartz crystal microbalance. Chin Sci Bull, 2003, 48(9): 873–875

    Article  CAS  Google Scholar 

  15. Hengerer A, Decker J, Prohaska E, et al. Quartz crystal microbalance (QCM) as a device for the screening of phage libraries. Biosens Bioelectron, 1999, 14(2): 139–144

    Article  PubMed  CAS  Google Scholar 

  16. Atherton E, Sheppard R C. Solid Phase Peptide Synthesis: A practical Approach. Oxford: IRL Press, 1989

    Google Scholar 

  17. Keen R T. Determination of oxetanes. Anal Chem, 1957, 29(7): 1041–1044

    Article  CAS  Google Scholar 

  18. Liu Y, Yu X, Zhao R, et al. Quartz crystal biosensor for real-time monitoring of molecular recognition between protein and small molecular medicinal agents. Biosens Bioelectron, 2003, 19(1): 9–19

    Article  MATH  PubMed  Google Scholar 

  19. Sundberg L, Porath I. Preparation of adsorbents for biospecific affinity chromatography: I. Attachment of group-containing ligands to insoluble polymers by means of bifunctional oxiranes. J Chromatogr, 1974, 90(1): 87–98

    Article  PubMed  CAS  Google Scholar 

  20. Rickert J, Brecht A, Gopel W. Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens Bioelectron, 1997, 12(7): 567–575

    Article  PubMed  CAS  Google Scholar 

  21. Bizet K, Gabrielli C, Perrot H. Immunodetection by quartz crystal microbalance—A new approach for direct detection of rabbit IgG and peroxidase. Appl Biochem Biotech, 2000, 89(2–3): 139–149

    Article  CAS  Google Scholar 

  22. Muramatsu H, Kim J M, Chang S M. Quartz-crystal sensors for biosensing and chemical analysis. Anal Bioanal Chem, 2002, 372(2): 314–321

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura C, Song S H, Chang S M, et al. Quartz crystal microbalance sensor targeting low molecular weight compounds using oligopeptide binder and peptide-imniobilized latex beads. Anal Chim Acta, 2002, 469(2): 183–188

    Article  CAS  Google Scholar 

  24. Melles E, Anderson H, Wallinder D, et al. Electroimmobilization of proinsulin C-peptide to a quartz crystal microbalance sensor chip for protein affinity purification. Anal Biochem, 2005, 341(1): 89–93

    Article  PubMed  CAS  Google Scholar 

  25. Carmon K S, Baltus R E, Luck L A. A biosensor for estrogenic substances using the quartz crystal microbalance. Anal Biochem, 2005, 345(2): 277–283

    Article  PubMed  CAS  Google Scholar 

  26. Park I S, Kim N. Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal. Biosens Bioelectron, 1998, 13(10): 1091–1097

    Article  PubMed  CAS  Google Scholar 

  27. Zhang H W, Zhao R, Chen Z Y, et al. QCM-FIA with PGMA coating for dynamic interaction study of heparin and antithrombin III. Biosens Bioelectron, 2005, 21(1): 121–127

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Rui.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20575072, 20435030 and 90408018) and the Chinese Academy of Sciences (Grant No. KJCX2-SW-H06)

About this article

Cite this article

Luo, J., Huang, Y., Xiong, S. et al. Study on peptide-peptide interaction using high-performance affinity chromatography and quartz crystal microbalance biosensor. CHINESE SCI BULL 52, 1311–1319 (2007). https://doi.org/10.1007/s11434-007-0175-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0175-3

Keywords

Navigation