Skip to main content
Log in

Bow-tie topological features of metabolic networks and the functional significance

  • Articles/Bioinformatics
  • Published:
Chinese Science Bulletin

Abstract

Exploring the structural topology of genome-based large-scale metabolic network is essential for investigating possible relations between structure and functionality. Visualization would be helpful for obtaining immediate information about structural organization. In this work, metabolic networks of 75 organisms were investigated from a topological point of view. A spread bow-tie model was proposed to give a clear visualization of the bow-tie structure for metabolic networks. The revealed topological pattern helps to design more efficient algorithm specifically for metabolic networks. This coarsegrained graph also visualizes the vulnerable connections in the network, and thus could have important implication for disease studies and drug target identifications. In addition, analysis on the reciprocal links and main cores in the GSC part of bow-tie also reveals that the bow-tie structure of metabolic networks has its own intrinsic and significant features which are significantly different from those of random networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goto S, Nishioka T, Kanehisa M. LIGAND: Chemical database of enzyme reactions. Nucl Acids Res, 2000, 28: 380–382

    Article  PubMed  CAS  Google Scholar 

  2. Goto S, Okuno Y, Hattori M, et al. LIGAND: Database of chemical compounds and reactions in biological pathways. Nucl Acids Res, 2002, 30: 402–404

    Article  PubMed  CAS  Google Scholar 

  3. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res, 2000, 28: 27–30

    Article  PubMed  CAS  Google Scholar 

  4. Karp P D, Krummenacker M, Paley S, et al. Integrated pathway-genome databases and their role in drug discovery. Trends Biotechnol, 1999, 17: 275–281

    Article  PubMed  CAS  Google Scholar 

  5. Ma H, Zeng A P. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics, 2003, 19: 270–277

    Article  PubMed  CAS  Google Scholar 

  6. Overbeek R, Larsen N, Pusch G D, et al. WIT: Integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucl Acids Res, 2000, 28: 123–125

    Article  PubMed  CAS  Google Scholar 

  7. Lemke N, Heredia F, Barcellos C K, et al. Essentiality and damage in metabolic networks. Bioinformatics, 2004, 20: 115–119

    Article  PubMed  CAS  Google Scholar 

  8. Patil K R, Nielsen J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci USA, 2005, 102: 2685–2689

    Article  PubMed  CAS  Google Scholar 

  9. Stelling J, Klamt S, Bettenbrock K, et al. Metabolic network structure determines key aspects of functionality and regulation. Nature, 2002, 420: 190–193

    Article  PubMed  CAS  Google Scholar 

  10. Palumbo C, Giuliani F. Functional essentiality from topology features in metabolic networks: A case study in yeast. FEBS Lett, 2005, 579: 4642–4646

    Article  PubMed  CAS  Google Scholar 

  11. Samal A, Singh S, Giri V, et al. Low degree metabolites explain essential reactions and enhance modularity in biological networks. BMC Bioinformatics, 2006, 7: 118

    Article  PubMed  Google Scholar 

  12. Albert R, Barabasi A L. Statistical mechanics of complex networks. Rev Mod Phys, 2002, 74: 47–97

    Article  Google Scholar 

  13. Jeong H, Mason S P, Barabasi A L, et al. Lethality and centrality in protein networks. Nature, 2001, 411: 41–42

    Article  PubMed  CAS  Google Scholar 

  14. Ma H W, Zeng A P. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics, 2003, 19: 1423–1430

    Article  PubMed  CAS  Google Scholar 

  15. Wagner A, Fell D A. The small world inside large metabolic networks. Proc R Soc Lond B, 2001, 268: 1803–1810

    Article  CAS  Google Scholar 

  16. Arita M. The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci USA, 2004, 101: 1543–1547

    Article  PubMed  CAS  Google Scholar 

  17. Arita M. Scale-freeness and biological networks. J Biochem, 2005, 138: 1–4

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka R. Scale-rich metabolic networks. Phys Rev Lett, 2005, 94: 168101

    Article  PubMed  Google Scholar 

  19. Tanaka R, Yi T M, Doyle J. Some protein interaction data to not exhibit power law statistics. EBS Lett, 2005, 579: 5140–5144

    CAS  Google Scholar 

  20. Zhao J, Yu H, Tuo J H, et al. Complex networks theory for analyzing metabolic networks. Chin Sci Bull, 2006, 51: 1529–1537

    Article  CAS  Google Scholar 

  21. Erdos P, Renyi A. On the evolution of random graphs. Publ Math Inst Hungar Acad Sci, 1960, 5: 17–61

    Google Scholar 

  22. Csete M, Doyle J, Bow ties.Metabolism and disease. Trends Biotechnol, 2004, 22: 446–450

    Article  PubMed  CAS  Google Scholar 

  23. Ma H W, Zhao X M, Yuan Y J, et al. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph. Bioinformatics, 2004, 20: 1870–1876

    Article  PubMed  CAS  Google Scholar 

  24. Broder A, Kumar R, Maghoul F, et al. Graph structure in the web. Compu Networks, 2000, 33: 309–320

    Article  Google Scholar 

  25. Kitano H. Biological robustness. Nat Rev Genet, 2004, 5: 826–837

    Article  PubMed  CAS  Google Scholar 

  26. Seidman S B. Network structure and minimum degree. Soc Networks, 1983, 5: 269–287

    Article  Google Scholar 

  27. Wuchty S, Almaas E. Peeling the yeast protein network. Proteomics, 2005, 5: 444–449

    Article  PubMed  CAS  Google Scholar 

  28. Garlaschelli D, Loffredo M I. Patterns of link reciprocity in directed networks. Phys Rev Lett, 2004, 93: 268701

    Google Scholar 

  29. Bondy J A, Murty U S R. Graph Theory With Applications. London: Macmillan, 1976

    Google Scholar 

  30. Batagelj V, Mrvar A. Pajek-program for large network analysis. Connections, 1998, 21: 47–57

    Google Scholar 

  31. Watts D J, Strogatz S H. Collective dynamics of ’small-world’ networks. Nature, 1998, 393: 440–442

    Article  PubMed  CAS  Google Scholar 

  32. Maslov S, Sneppen K, Zaliznyak A. Detection of topological patterns in complex networks: Correlation profile of the internet. Physica A, 2004, 333: 529–540

    Article  Google Scholar 

  33. Zhao J, Yu H, Luo J, et al. Hierarchical modularity of nested bow-ties in metabolic networks. BMC Bioinf, 2006, 7: 386

    Article  Google Scholar 

  34. Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science, 2002, 296: 910–913

    Article  PubMed  CAS  Google Scholar 

  35. Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297: 1551–1555

    Article  PubMed  CAS  Google Scholar 

  36. Spirin V, Gelfand M S, Mironov A A, et al A metabolic network in the evolutionary context: Multiscale structure and modularity. Proc Natl Acad Sci USA, 2006, 103: 8774–8779

    Article  PubMed  CAS  Google Scholar 

  37. Holme P, Huss M, Jeong H, et al. Subnetwork hierarchies of biochemical pathways. Bioinformatics, 2003, 19: 532–538

    Article  PubMed  CAS  Google Scholar 

  38. Tanaka R, Csete M, Doyle J. Highly optimised global organisation of metabolic networks. IEE Proc Syst Biol, 2005, 152(4): 179–184

    Article  CAS  Google Scholar 

  39. Kitano H, Oda K. Robustness trade-offs and host-microbial symbiosis in the immune system. Mol Syst Biol, 2006, 2: E1–E10

    Article  Google Scholar 

  40. Kitano H, Oda K, Kimura T, et al. Metabolic Syndrome and Robustness Tradeoffs. Diabetes, 2004, 53: S6–S15

    Article  PubMed  CAS  Google Scholar 

  41. Marhl M, Perc M, Schuster S. Selective regulation of cellular processes via protein cascades acting as band-pass filters for time-limited oscillations. FEBS Lett, 2005, 579: 5461–5465

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cao ZhiWei or Li YiXue.

Additional information

Supported in part by the Ministry of Science and Technology of China (Grant Nos. 2003CB715900 and 2004CB720103), National Natural Science Foundation of China (Grant Nos. 30500107 and 30670953), and Science and Technology Commission of Shanghai Municipality (Grant Nos. 04DZ19850 and 04DZ14005)

About this article

Cite this article

Zhao, J., Tao, L., Yu, H. et al. Bow-tie topological features of metabolic networks and the functional significance. Chin. Sci. Bull. 52, 1036–1045 (2007). https://doi.org/10.1007/s11434-007-0143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0143-y

Keywords

Navigation