Skip to main content
Log in

Identification of three novel noncoding RNAs from Drosophila melanogaster

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Three novel small noncoding RNAs were identified from the conserved intronic regions of D. melanogaster by using comparative genomics method and molecular biology approach. One is a novel snoRNA in a combinated way, which displays structural features typical of C/D box snoRNA family and possesses a 10-nt-long rRNA antisense element for guiding the 2′-O-methylation of the D. melanogaster 28S rRNA at C2673. The other two are miRNAs whose predicted precursors adopt a stemloop structure characteristic of known miRNA. The two miRNAs genes appear to have ubiquitous expression profiles with ∼23-nt RNA transcripts detected by Northern blotting. Our study revealed 396 multi-species intronic conserved sequences (MCIS) that nested in the introns with a length from 100 to 500 bp. In addition to small RNA coding, the MCIS might function as cis-acting elements involved in gene transcription or post-transcriptional processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eddy S R. Non-coding RNA genes and the modern RNA world. Nat Rev Genet, 2001, 2(12): 919–929

    Article  Google Scholar 

  2. Maxwell E S, Fournier M J. The small nucleolar RNAs. Annu Rev Biochem, 1995, 64: 897–934

    Article  Google Scholar 

  3. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843–854

    Article  Google Scholar 

  4. Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901–906

    Article  Google Scholar 

  5. Balakin A G, Smith L, Fournier M J. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell, 1996, 86(5): 823–834

    Article  Google Scholar 

  6. Kiss-Laszlo Z, Henry Y, Bachellerie J P, et al. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell, 1996, 85(7): 1077–1088

    Article  Google Scholar 

  7. Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543): 853–858

    Article  Google Scholar 

  8. Zeng Y, Wagner E J, Cullen B R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell, 2002, 9(6): 1327–1333

    Article  Google Scholar 

  9. Llave C, Xie Z, Kasschau K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002, 297(5589): 2053–2056

    Article  Google Scholar 

  10. Lim L P, Glasner M E, Yekta S, et al. Vertebrate microRNA genes. Science, 2003, 299(5612): 1540

    Article  Google Scholar 

  11. Lim L P, Lau N C, Weinstein E G, et al. The microRNAs of Caenorhabditis elegans. Genes Dev, 2003, 17(8): 991–1008

    Article  Google Scholar 

  12. Pang K C, Frith M C, Mattick J S. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet, 2006, 22(1): 1–5

    Article  Google Scholar 

  13. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res, 2004, 32(Database issue): D109–111

    Article  Google Scholar 

  14. Griffiths-Jones S, Grocock R J, van Dongen S, et al. miRBase microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006, 34(Database issue): D140–144

    Article  Google Scholar 

  15. Lestrade L, Weber M J. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res, 2006, 34(Database issue): D158–162

    Article  Google Scholar 

  16. Brown J W, Echeverria M, Qu L H, et al. Plant snoRNA database. Nucleic Acids Res, 2003, 31(1): 432–435

    Article  Google Scholar 

  17. Andolfatto P. Adaptive evolution of non-coding DNA in Drosophila. Nature, 2005, 437(7062): 1149–1152

    Article  Google Scholar 

  18. Fedorov A, Stombaugh J, Harr M W, et al. Computer identification of snoRNA genes using a Mammalian Orthologous Intron Database. Nucleic Acids Res, 2005, 33(14): 4578–4583

    Article  Google Scholar 

  19. Adams M D, Celniker S E, Holt R A, et al. The genome sequence of Drosophila melanogaster. Science, 2000, 287(5461): 2185–2195

    Article  Google Scholar 

  20. Holt R A, Subramanian G M, Halpern A, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science, 2002, 298(5591): 129–149

    Article  Google Scholar 

  21. Deutsch M, Long M. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res, 1999, 27(15): 3219–3228

    Article  Google Scholar 

  22. Yu J, Yang Z, Kibukawa M, et al. Minimal introns are not “junk”. Genome Res, 2002, 12(8): 1185–1189

    Article  Google Scholar 

  23. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987, 162(1): 156–159

    Article  Google Scholar 

  24. Park W, Li J, Song R, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002, 12(17): 1484–1495

    Article  Google Scholar 

  25. Zhou H, Chen Y Q, Du Y P, et al. The Schizosaccharomyces pombe mgU6-47 gene is required for 2′-O-methylation of U6 snRNA at A41. Nucleic Acids Res, 2002, 30(4): 894–902

    Article  Google Scholar 

  26. Yuan G, Klambt C, Bachellerie J P, et al. RNomics in Drosophila melanogaster: Identification of 66 candidates for novel non-messenger RNAs. Nucleic Acids Res, 2003, 31(10): 2495–2507

    Article  Google Scholar 

  27. Huang Z P, Zhou H, He H L, et al. Genome-wide analyses of two families of snoRNA genes from Drosophila melanogaster, demonstrating the extensive utilization of introns for coding of snoRNAs. RNA, 2005, 11(8): 1303–1316

    Article  Google Scholar 

  28. Huang Z P, Zhou H, Liang D, et al. Different expression strategy: Multiple intronic gene clusters of box H/ACA snoRNA in Drosophila melanogaster. J Mol Biol, 2004, 341(3): 669–683

    Article  Google Scholar 

  29. Aravin A A, Lagos-Quintana M, Yalcin A, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell, 2003, 5(2): 337–350

    Article  Google Scholar 

  30. Lai E C, Tomancak P, Williams R W, et al. Computational identification of Drosophila microRNA genes. Genome Biol, 2003, 4(7): R42

    Article  Google Scholar 

  31. Schattner P, Brooks A N, Lowe T M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res, 2005, 33(Web Server issue): W686–689

    Article  Google Scholar 

  32. Standiford D M, Sun W T, Davis M B, et al. Positive and negative intronic regulatory elements control muscle-specific alternative exon splicing of Drosophila myosin heavy chain transcripts. Genetics, 2001, 157: 259–271

    Google Scholar 

  33. Glazov E A, Pheasant M, McGraw E A, et al. Ultraconserved elements in insect genomes: A highly conserved intronic sequence implicated in the control of homothorax mRNA splicing. Genome Res, 2005, 15(6): 800–808

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qu Lianghu.

About this article

Cite this article

He, H., Zhou, H., Xiao, Z. et al. Identification of three novel noncoding RNAs from Drosophila melanogaster . CHINESE SCI BULL 51, 2737–2742 (2006). https://doi.org/10.1007/s11434-006-2202-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-2202-1

Keywords

Navigation