Skip to main content
Log in

First-principles investigation of the alloying effect of Ta and W on γ-TiAl

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

The alloying effect of the refractory elements Ta and W on the electronic structure of γ-TiAl is investigated by using the first-principles discrete variational method within the framework of density functional theory. The impurity formation energy result indicates that Ta and W can stay steadily in the TiAl system by way of substitution. The Mulliken population, density of states and charge density difference results show that Ta and W both give rise to the strong interaction between themselves and the neighboring host atoms. The alloying effect of the two elements on γ-TiAl is the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim Y W. Ordered intermetallic alloys. III: γ-titanium aluminides. JOM, 1994, 46: 30–39

    Google Scholar 

  2. Froes F H, Suryanarayana C, Eliezer D. Review synthesis: Properties and applications of titanium aluminides. J Mater Sci, 1992, 27: 5113–5140

    Article  Google Scholar 

  3. Benedek R, Walle A van de, Gerstl S S A, et al. Partitioning of solutes in multiphase Ti-Al alloys. Phys Rev B, 2005, 71: 094201

    Google Scholar 

  4. Dinko V, Li Z X, Whang S H. Effect of rapid solidification and alloying addition on lattice distortion and atomic ordering in L10 TiAl alloys and their ternary alloys. Metall Trans A, 1988, 19: 2445–2455

    Google Scholar 

  5. Hao Y L, Xu D S, Cui Y Y, et al. The site occupancies of alloying elements in TiAl and Ti3Al alloys. Acta Mater, 1999, 47: 1129–1139

    Article  Google Scholar 

  6. Liu Y, Chen K Y, Zhang J H, et al. Electronic effects of oxygen and vanadium impurities in TiAl. J Phys: Condens Matter, 1997, 9: 9829–9843

    Article  Google Scholar 

  7. Sun F S, Cao C X, Kim S E, et al. Alloying mechanism of beta stabilizers in a TiAl alloy. Metall Mater Trans A, 2001, 32: 1573–1589

    Google Scholar 

  8. Li Y G, Loretto M H. Microstructure and fracture behaviour of Ti-44Al-xM derivatives. Acta Metall Mater, 1994, 42: 2913–2919

    Article  Google Scholar 

  9. Yu R, He L L, Ye H Q. Effect of W on structural stability of TiAl intermetallics and the site preference of W. Phys Rev B, 2002, 65: 184102

    Google Scholar 

  10. Martin P L, Mendiratta M G, Lipsitt H A. Creep deformation of TiAl and TiAl + W alloys. Metall Trans A., 1983, 14: 2170–2174

    Google Scholar 

  11. Triantafillou J, Beddoes J, Zhao L, et al. Creep properties of near γ-TiAl+W with a lamellar microstructure. Scr Metall Mater, 1994, 31: 1387–1392

    Article  Google Scholar 

  12. Ramanujan R V, Maziasz P J, Liu C T. The thermal stability of the microstructure of γ-based titanium aluminides. Acta Mater, 1996, 44: 2611–2642

    Article  Google Scholar 

  13. Zhang Y G, Han Y F, Chen G L, et al. Structural Material of Intermetallics. Beijing: National Defense Industry Press, 2001. 768–779

    Google Scholar 

  14. Ellis D E, Painter G S. Discrete variational method for the energy-band problem with general crystal potentials. Phys Rev B, 1970, 2: 2887–2898

    Article  Google Scholar 

  15. Averill F W, Ellis D E. An efficient numerical multicenter basis set for molecular orbital calculations: Application to FeCl4. J Chem Phys, 1973, 59: 6412–6418

    Article  Google Scholar 

  16. Rosen A, Ellis D E, Adachi H, et al. Calculations of molecular ionization energies using a selfconsistent-charge Hartree-Fock-Slater method. J Chem Phys, 1976, 65: 3629–3634

    Article  Google Scholar 

  17. Delley B, Ellis D E. Efficient and accurate expansion methods for molecules in local density models. J Chem Phys, 1982, 76: 1949–1960

    Article  Google Scholar 

  18. Ellis D E, Benesh G A, Byrom E. Molecular cluster studies of binary alloys: LiAl. Phys Rev B, 1977, 16: 3308–3313

    Article  Google Scholar 

  19. Guo J, Ellis D E, Lam D J. First-principles calculation of the electronic structure of sapphire: Bulk states. Phys Rev B, 1991, 45: 3204–3214

    Article  Google Scholar 

  20. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B, 1964, 136: 864–871

    Article  Google Scholar 

  21. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev A, 1965, 140: 1133–1138

    Article  Google Scholar 

  22. Wang F H, Wang C Y. First-principles investigation of hydrogen embrittlement in polycrystalline Ni3Al. Phys Rev B, 1998, 57: 289–295

    Article  Google Scholar 

  23. Barth U V, Hedin L. A local exchange-correlation potential for the spin polarized case. J Phys C: Solid State Phys, 1972, 5: 1629–1642

    Article  Google Scholar 

  24. Brandes E A. Smithells’ Metals Reference Book. 6th ed. London: Butterworth, 1983

    Google Scholar 

  25. Hao Y L, Xu D S, Cui Y Y, et al. The site occupancies of alloying elements in TiAl and Ti3Al alloys. Acta Mater, 1999, 47: 1129–1139

    Article  Google Scholar 

  26. Delly B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys, 1990, 92: 508–517

    Article  Google Scholar 

  27. Delly B. Analytic energy derivatives in the numerical local-density-functional approach. J Chem Phys, 1991, 94: 7245–7250

    Article  Google Scholar 

  28. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  Google Scholar 

  29. Dang H L, Wang C Y, Shu X L. Electronic structure of edge dislocation of core-doped Ti in Fe. Prog Natur Sci, 2004, 14: 477–482

    Article  Google Scholar 

  30. Wang F H, Wang C Y, Yang J L. The effect of zirconium on the electronic structure of grain boundaries in Ni3Al. J Phys: Condens Matter, 1997, 9: 4499–4507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Hongli.

About this article

Cite this article

Dang, H., Wang, C. & Yu, T. First-principles investigation of the alloying effect of Ta and W on γ-TiAl. CHINESE SCI BULL 51, 2690–2695 (2006). https://doi.org/10.1007/s11434-006-2183-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-2183-0

Keywords

Navigation