Skip to main content
Log in

Discovery of strong bulk Dzyaloshinskii-Moriya interaction in composition-uniform centrosymmetric magnetic single layers

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Dzyaloshinskii-Moriya interaction (DMI) is the key ingredient of chiral spintronic phenomena and the emerging technologies based on such phenomena. A nonzero DMI usually occurs at magnetic interfaces or within non-centrosymmetric single crystals. Here, we report the observation of a strong unexpected DMI within a centrosymmetric polycrystalline ferromagnet that has neither a crystal inversion symmetry breaking nor a composition gradient. This DMI is a bulk effect, increases with the thickness of the magnetic layer, and is insensitive to the symmetry of the interfaces or the neighboring materials. We observe a total DMI strength that is a factor of > 2 greater than the highest interfacial DMI in the literature. This DMI most likely arises from the strong spin-orbit coupling, strong orbital hybrization, and a “hidden” long-range asymmetry in the material. Our discovery of the strong unconventional bulk DMI in centrosymmetric, composition-uniform magnetic single layers provides fundamental building blocks for the emerging field of spintronics and will stimulate the exploitation of unconventional spin-orbit phenomena in a wide range of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. Nanotech. 8, 839 (2013).

    Article  ADS  Google Scholar 

  2. W. S. Wei, Z. D. He, Z. Qu, and H. F. Du, Rare Met. 40, 3076 (2021).

    Article  Google Scholar 

  3. B. Dai, D. Wu, S. A. Razavi, S. Xu, H. He, Q. Shu, M. Jackson, F. Mahfouzi, H. Huang, Q. Pan, Y. Cheng, T. Qu, T. Wang, L. Tai, K. Wong, N. Kioussis, and K. L. Wang, Sci. Adv. 9, eade6836 (2023).

    Article  Google Scholar 

  4. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).

    Article  ADS  Google Scholar 

  5. W. He, C. Wan, C. Zheng, Y. Wang, X. Wang, T. Ma, Y. Wang, C. Guo, X. Luo, M. E. Stebliy, G. Yu, Y. Liu, A. V. Ognev, A. S. Samardak, and X. Han, Nano Lett. 22, 6857 (2022).

    Article  ADS  Google Scholar 

  6. G. E. Rowlands, S. V. Aradhya, S. Shi, E. H. Yandel, J. Oh, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 110, 122402 (2017).

    Article  ADS  Google Scholar 

  7. L. Zhu, L. Zhu, S. Shi, D. C. Ralph, and R. A. Buhrman, Adv. Elect. Mater. 6, 1901131 (2020).

    Article  Google Scholar 

  8. O. J. Lee, L. Q. Liu, C. F. Pai, Y. Li, H. W. Tseng, P. G. Gowtham, J. P. Park, D. C. Ralph, and R. A. Buhrman, Phys. Rev. B 89, 024418 (2014).

    Article  ADS  Google Scholar 

  9. L. Zhu, Adv. Mater. 48, 2300853 (2023).

    Article  Google Scholar 

  10. M. Cubukcu, J. Sampaio, K. Bouzehouane, D. Apalkov, A. V. Khvalkovskiy, V. Cros, and N. Reyren, Phys. Rev. B 93, 020401 (2016).

    Article  ADS  Google Scholar 

  11. L. Zhu, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 123, 057203 (2019).

    Article  ADS  Google Scholar 

  12. U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006).

    Article  ADS  Google Scholar 

  13. M. Uchida, Y. Onose, Y. Matsui, and Y. Tokura, Science 311, 359 (2006).

    Article  ADS  Google Scholar 

  14. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).

    Article  ADS  Google Scholar 

  15. S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Science 336, 198 (2012).

    Article  ADS  Google Scholar 

  16. I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. M. Eng, J. S. White, H. M. Rennow, C. D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, and A. Loidl, Nat. Mater. 14, 1116 (2015).

    Article  ADS  Google Scholar 

  17. D. H. Kim, M. Haruta, H. W. Ko, G. Go, H. J. Park, T. Nishimura, D. Y. Kim, T. Okuno, Y. Hirata, Y. Futakawa, H. Yoshikawa, W. Ham, S. Kim, H. Kurata, A. Tsukamoto, Y. Shiota, T. Moriyama, S. B. Choe, K. J. Lee, and T. Ono, Nat. Mater. 18, 685 (2019).

    Article  ADS  Google Scholar 

  18. J. W. Lee, J. Y. Park, J. M. Yuk, and B. G. Park, Phys. Rev. Appl. 13, 044030 (2020).

    Article  ADS  Google Scholar 

  19. L. Zhu, X. S. Zhang, D. A. Muller, D. C. Ralph, and R. A. Buhrman, Adv. Funct. Mater. 30, 2005201 (2020).

    Article  Google Scholar 

  20. Q. Liu, L. Zhu, X. S. Zhang, D. A. Muller, and D. C. Ralph, Appl. Phys. Rev. 9, 021402 (2022).

    Article  ADS  Google Scholar 

  21. A. B. Shick, V. Drchal, J. Kudrnovsky, and P. Weinberger, Phys. Rev. B 54, 1610 (1996).

    Article  ADS  Google Scholar 

  22. H. T. Nembach, J. M. Shaw, M. Weiler, E. Jué, and T. J. Silva, Nat. Phys. 11, 825 (2015).

    Article  Google Scholar 

  23. H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, Phys. Rev. Lett. 115, 267210 (2015).

    Article  ADS  Google Scholar 

  24. R. L. Conte, E. Martinez, A. Hrabec, A. Lamperti, T. Schulz, L. Nasi, L. Lazzarini, R. Mantovan, F. Maccherozzi, S. S. Dhesi, B. Ocker, C. H. Marrows, T. A. Moore, and M. Kläui, Phys. Rev. B 91, 014433 (2015).

    Article  ADS  Google Scholar 

  25. N. H. Kim, J. Jung, J. Cho, D. S. Han, Y. Yin, J. S. Kim, H. J. M. Swagten, and C. Y. You, Appl. Phys. Lett. 108, 142406 (2016).

    Article  ADS  Google Scholar 

  26. A. K. Chaurasiya, C. Banerjee, S. Pan, S. Sahoo, S. Choudhury, J. Sinha, and A. Barman, Sci. Rep. 6, 32592 (2016).

    Article  ADS  Google Scholar 

  27. S. Tacchi, R. E. Troncoso, M. Ahlberg, G. Gubbiotti, M. Madami, J. Akerman, and P. Landeros, Phys. Rev. Lett. 118, 147201 (2017).

    Article  ADS  Google Scholar 

  28. X. Ma, G. Yu, X. Li, T. Wang, D. Wu, K. S. Olsson, Z. Chu, K. An, J. Q. Xiao, K. L. Wang, and X. Li, Phys. Rev. B 94, 180408 (2016).

    Article  ADS  Google Scholar 

  29. X. Ma, G. Yu, C. Tang, X. Li, C. He, J. Shi, K. L. Wang, and X. Li, Phys. Rev. Lett. 120, 157204 (2018).

    Article  ADS  Google Scholar 

  30. M. Kostylev, J. Appl. Phys. 115, 233902 (2014).

    Article  ADS  Google Scholar 

  31. J. Cho, N. H. Kim, S. Lee, J. S. Kim, R. Lavrijsen, A. Solignac, Y. Yin, D. S. Han, N. J. J. van Hoof, H. J. M. Swagten, B. Koopmans, and C. Y. You, Nat. Commun. 6, 7635 (2015).

    Article  ADS  Google Scholar 

  32. D. Cortés-Ortuno, and P. Landeros, J. Phys.-Condens. Matter 25, 156001 (2013).

    Article  ADS  Google Scholar 

  33. L. Zhu, L. Zhu, X. Ma, X. Li, and R. A. Buhrman, Commun. Phys. 5, 151 (2022).

    Article  Google Scholar 

  34. L. Zhu, K. Sobotkiewich, X. Ma, X. Li, D. C. Ralph, and R. A. Buhrman, Adv. Funct. Mater. 29, 1805822 (2019).

    Article  Google Scholar 

  35. K. Di, V. L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok, X. Qiu, and H. Yang, Appl. Phys. Lett. 106, 052403 (2015).

    Article  ADS  Google Scholar 

  36. Y. Ishikuro, M. Kawaguchi, N. Kato, Y. C. Lau, and M. Hayashi, Phys. Rev. B 99, 134421 (2019).

    Article  ADS  Google Scholar 

  37. L. Zhu, L. Zhu, S. Shi, M. Sui, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Appl. 11, 061004 (2019).

    Article  ADS  Google Scholar 

  38. S. Kim, K. Ueda, G. Go, P. H. Jang, K. J. Lee, A. Belabbes, A. Manchon, M. Suzuki, Y. Kotani, T. Nakamura K. Nakamura, T. Koyama, D. Chiba, K. T. Yamada, D. H. Kim, T. Moriyama, K. J. Kim, and T. Ono, Nat. Commun. 9, 1648 (2018).

    Article  ADS  Google Scholar 

  39. A. Belabbes, G. Bihlmayer, F. Bechstedt, S. Blügel, and A. Manchon, Phys. Rev. Lett. 117, 247202 (2016).

    Article  ADS  Google Scholar 

  40. V. Kashid, T. Schena, B. Zimmermann, Y. Mokrousov, S. Blügel, V. Shah, and H. G. Salunke, Phys. Rev. B 90, 054412 (2014).

    Article  ADS  Google Scholar 

  41. G. Chen, A. Mascaraque, H. Jia, B. Zimmermann, M. C. Robertson, R. L. Conte, M. Hoffmann, M. A. Gonzalez Barrio, H. Ding, R. Wiesendanger, E. G. Michel, S. Blügel, A. K. Schmid, and K. Liu, Sci. Adv. 6, eaba4924 (2020).

    Article  ADS  Google Scholar 

  42. T. Srivastava, M. Schott, R. Juge, V. Kfizáková, M. Belmeguenai, Y. Roussigné, A. Bernand-Mantel, L. Ranno, S. Pizzini, S. M. Chérif, A. Stashkevich, S. Auffret, O. Boulle, G. Gaudin, M. Chshiev, C. Baraduc, and H. Béa, Nano Lett. 18, 4871 (2018).

    Article  ADS  Google Scholar 

  43. H. T. Nembach, E. Jué, E. R. Evarts, and J. M. Shaw, Phys. Rev. B 101, 020409 (2020).

    Article  ADS  Google Scholar 

  44. K. Shibata, J. Iwasaki, N. Kanazawa, S. Aizawa, T. Tanigaki, M. Shirai, T. Nakajima M. Kubota, M. Kawasaki, H. S. Park, D. Shindo, N. Nagaosa, and Y. Tokura, Nat. Nanotech. 10, 589 (2015).

    Article  ADS  Google Scholar 

  45. Y. Nii, T. Nakajima, A. Kikkawa, Y. Yamasaki, K. Ohishi, J. Suzuki, Y. Taguchi, T. Arima, Y. Tokura, and Y. Iwasa, Nat. Commun. 6, 8539 (2015).

    Article  ADS  Google Scholar 

  46. T. Koretsune, N. Nagaosa, and R. Arita, Sci. Rep. 5, 13302 (2015).

    Article  ADS  Google Scholar 

  47. N. S. Gusev, A. V. Sadovnikov, S. A. Nikitov, M. V. Sapozhnikov, and O. G. Udalov, Phys. Rev. Lett. 124, 157202 (2020).

    Article  ADS  Google Scholar 

  48. Y. Zhang, J. Liu, Y. Dong, S. Wu, J. Zhang, J. Wang, J. Lu, A. Rückriegel, H. Wang, R. Duine, H. Yu, Z. Luo, K. Shen, and J. Zhang, Phys. Rev. Lett. 127, 117204 (2021).

    Article  ADS  Google Scholar 

  49. P. Andreazza, V. Pierron-Bohnes, F. Tournus, C. Andreazza-Vignolle, and V. Dupuis, Surf. Sci. Rep. 70, 188 (2015).

    Article  ADS  Google Scholar 

  50. R. J. Jaccodine, and W. A. Schlegel, J. Appl. Phys. 37, 2429 (1966).

    Article  ADS  Google Scholar 

  51. C. H. Bjorkman, J. T. Fitch, and G. Lucovsky, Appl. Phys. Lett. 56, 1983 (1990).

    Article  ADS  Google Scholar 

  52. S. R. Stiffler, J. Appl. Phys. 68, 351 (1990).

    Article  ADS  Google Scholar 

  53. R. O. M. Aboljadayel, A. Ionescu, O. J. Burton, G. Cheglakov, S. Hofmann, and C. H. W. Barnes, Nanomaterials 11, 1598 (2021).

    Article  Google Scholar 

  54. L. Zhu, and R. A. Buhrman, Phys. Rev. Appl. 12, 051002 (2019).

    Article  ADS  Google Scholar 

  55. C. Kittel, Phys. Rev. 73, 155 (1948).

    Article  ADS  Google Scholar 

  56. Q. Zhang, J. Liang, K. Bi, L. Zhao, H. Bai, Q. Cui, H. A. Zhou, H. Bai, H. Feng, W. Song, G. Chai, O. Gladii, H. Schultheiss, T. Zhu, J. Zhang, Y. Peng, H. Yang, and W. Jiang, Phys. Rev. Lett. 128, 167202 (2022).

    Article  ADS  Google Scholar 

  57. J. Liang, M. Chshiev, A. Fert, and H. Yang, Nano Lett. 22, 10128 (2022).

    Article  ADS  Google Scholar 

  58. H. Yang, J. Liang, and Q. Cui, Nat. Rev. Phys. 5, 43 (2023).

    Article  Google Scholar 

  59. N. D. Khanh, T. Nakajima, X. Yu, S. Gao, K. Shibata, M. Hirschberger, Y. Yamasaki, H. Sagayama, H. Nakao, L. Peng, K. Nakajima, R. Takagi, T. Arima, Y. Tokura, and S. Seki, Nat. Nanotechnol. 15, 444 (2020).

    Article  ADS  Google Scholar 

  60. R. Takagi, N. Matsuyama, V. Ukleev, L. Yu, J. S. White, S. Francoual, J. R. L. Mardegan, S. Hayami, H. Saito, K. Kaneko, K. Ohishi, Y. Ōnuki, T. Arima, Y. Tokura, T. Nakajima, and S. Seki, Nat. Commun. 13, 1472 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1204004), the National Natural Science Foundation of China (Grant No. 12274405), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000). The DMI measurement performed at UT-Austin was primarily supported by the Center for Dynamics and Control of Materials: an NSF MRSEC under Cooperative Agreement No. DMR1720595. The authors acknowledge Xiyue Zhang and David Muller for help with the sample characterizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Lujan, D. & Li, X. Discovery of strong bulk Dzyaloshinskii-Moriya interaction in composition-uniform centrosymmetric magnetic single layers. Sci. China Phys. Mech. Astron. 67, 227511 (2024). https://doi.org/10.1007/s11433-023-2232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2232-2

Navigation