Skip to main content
Log in

Promoting the optoelectronic and ferromagnetic properties of Cr2S3 nanosheets via Se doping

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Doping can change the band structure of semiconductors, thereby affecting their electrical, optical, and magnetic properties. In this study, we describe the synthesis of two-dimensional (2D) Se-doped Cr2S3 (Se-Cr2S3) nanosheets using the chemical vapor deposition method. In these semiconductor nanosheets, the Se doping concentration can be controlled by tuning the Se/S mass ratio in the precursor. At the doping concentrations of 10.05% and 2.05%, the room temperature conductivity and mobility were increased by nearly 4 and 2 orders of magnitude, respectively. In addition, the response time of an ultrathin Se-Cr2S3 photo-detector was 200 times shorter than that of an undoped Cr2S3 nanosheet photodetector. 4.07%-Se-Cr2S3 nanosheets show ferrimagnetic behavior with a Curie temperature of ∼200 K, which is 80 K higher than that of undoped Cr2S3 nanosheets. A density functional theory calculation indicated that the Se doping can induce the formation of intercalated Cr vacancies in Se-Cr2S3 and enhance its metallic characteristics. Our results demonstrated that Se-Cr2S3 has significant potential in future electronic, optoelectronic, and spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Luo, F. Zhuge, Q. Zhang, Y. Chen, L. Lv, Y. Huang, H. Li, and T. Zhai, Nanoscale Horiz. 4, 26 (2019).

    Article  ADS  Google Scholar 

  2. X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, J. Jiang, A. Pan, Y. Huang, R. Yu, and X. Duan, Nano Lett. 16, 264 (2016).

    Article  ADS  Google Scholar 

  3. J. Liu, X. Liu, Z. Chen, L. Miao, X. Liu, B. Li, L. Tang, K. Chen, Y. Liu, J. Li, Z. Wei, and X. Duan, Nano Res. 12, 463 (2019).

    Article  Google Scholar 

  4. F. Zhong, J. Ye, T. He, L. Zhang, Z. Wang, Q. Li, B. Han, P. Wang, P. Wu, Y. Yu, J. Guo, Z. Zhang, M. Peng, T. Xu, X. Ge, Y. Wang, H. Wang, M. Zubair, X. Zhou, P. Gao, Z. Fan, and W. Hu, Small 17, 2102855 (2021).

    Article  Google Scholar 

  5. H. Bouzid, R. Sahoo, S. J. Yun, K. Singh, Y. Jin, J. Jiang, D. Yoon, H. Y. Song, G. Kim, W. Choi, Y. M. Kim, and Y. H. Lee, Adv. Funct. Mater. 31, 2102560 (2021).

    Article  Google Scholar 

  6. Z. Li, W. Shu, Q. Li, W. Xu, Z. Zhang, J. Li, Y. Wang, Y. Liu, J. Yang, K. Chen, X. Duan, Z. Wei, and B. Li, Adv. Electron. Mater. 7, 2001168 (2021).

    Article  Google Scholar 

  7. S. Yuan, C. Fan, H. Tian, Y. Zhang, Z. Zhang, M. Zhong, H. Liu, M. Wang, and E. Li, ACS Appl. Mater. Interfaces 12, 2607 (2020).

    Article  Google Scholar 

  8. J. Liu, M. Zhong, X. Liu, G. Sun, P. Chen, Z. Zhang, J. Li, H. Ma, B. Zhao, R. Wu, W. Dang, X. Yang, C. Dai, X. Tang, C. Fan, Z. Chen, L. Miao, X. Liu, Y. Liu, B. Li, and X. Duan, Nanotechnology 29, 474002 (2018).

    Article  ADS  Google Scholar 

  9. W. Han, K. Liu, S. Yang, F. Wang, J. Su, B. Jin, H. Li, and T. Zhai, Sci. China Chem. 62, 1300 (2019).

    Article  Google Scholar 

  10. X. Duan, C. Wang, A. Pan, R. Yu, and X. Duan, Chem. Soc. Rev. 44, 8859 (2015).

    Article  Google Scholar 

  11. C. Xie, P. Yang, Y. Huan, F. Cui, and Y. Zhang, Dalton Trans. 49, 10319 (2020).

    Article  Google Scholar 

  12. B. Li, Z. Wan, C. Wang, P. Chen, B. Huang, X. Cheng, Q. Qian, J. Li, Z. Zhang, G. Sun, B. Zhao, H. Ma, R. Wu, Z. Wei, Y. Liu, L. Liao, Y. Ye, Y. Huang, X. Xu, X. Duan, W. Ji, and X. Duan, Nat. Mater. 20, 818 (2021).

    Article  ADS  Google Scholar 

  13. Q. Q. Li, S. Li, D. Wu, Z. K. Ding, X. H. Cao, L. Huang, H. Pan, B. Li, K. Q. Chen, and X. D. Duan, Appl. Phys. Lett. 119, 162402 (2021).

    Article  ADS  Google Scholar 

  14. N. Zhou, R. Yang, and T. Zhai, Mater. Today Nano 8, 100051 (2019).

    Article  Google Scholar 

  15. F. Wang, Z. Wang, T. A. Shifa, Y. Wen, F. Wang, X. Zhan, Q. Wang, K. Xu, Y. Huang, L. Yin, C. Jiang, and J. He, Adv. Funct. Mater. 27, 1603254 (2017).

    Article  Google Scholar 

  16. R. Cheng, Y. Wen, L. Yin, F. Wang, F. Wang, K. Liu, T. A. Shifa, J. Li, C. Jiang, Z. Wang, and J. He, Adv. Mater. 29, 1703122 (2017).

    Article  Google Scholar 

  17. E. Navarro-Moratalla, J. O. Island, S. Mañas-Valero, E. Pinilla-Cienfuegos, A. Castellanos-Gomez, J. Quereda, G. Rubio-Bollinger, L. Chirolli, J. A. Silva-Guillén, N. Agraït, G. A. Steele, F. Guinea, H. S. J. van der Zant, and E. Coronado, Nat. Commun. 7, 11043 (2016), arXiv: 1604.05656.

    Article  ADS  Google Scholar 

  18. L. Wang, M. Liu, J. Li, R. Li, H. Ma, and X. Q. Chen, Phys. Rev. B 104, 195123 (2021).

    Article  ADS  Google Scholar 

  19. H. Li, H. Wang, W. Gao, Z. Chen, Y. Han, X. Zhu, and M. Tian, Nanomaterials 11, 2826 (2021).

    Article  ADS  Google Scholar 

  20. H. H. Wang, Z. H. Cheng, M. Z. Shi, D. H. Ma, W. Z. Zhuo, C. Y. Xi, T. Wu, J. J. Ying, and X. H. Chen, Sci. China-Phys. Mech. Astron. 64, 287411 (2021).

    Article  ADS  Google Scholar 

  21. Q. Z. Wang, X. Liu, H. J. Zhang, N. Samarth, S. C. Zhang, and C. X. Liu, Phys. Rev. Lett. 113, 147201 (2014), arXiv: 1311.4113.

    Article  ADS  Google Scholar 

  22. B. Deng, Y. Zhang, S. B. Zhang, Y. Wang, K. He, and J. Zhu, Phys. Rev. B 94, 054113 (2016), arXiv: 1511.08646.

    Article  ADS  Google Scholar 

  23. F. Luo, X. Hao, Y. Jia, J. Yao, Q. Meng, S. Zhai, J. Wu, W. Dou, and M. Zhou, Nanoscale 13, 2527 (2021).

    Article  Google Scholar 

  24. M. Vila, J. H. Garcia, and S. Roche, Phys. Rev. B 104, L161113 (2021), arXiv: 2107.00034.

    Article  ADS  Google Scholar 

  25. A. Cresti, B. K. Nikolic, J. H. Garcia, and S. Roche, Riv. Nuovo Cimento 39, 587 (2016).

    Google Scholar 

  26. M. Azari, and G. Kirczenow, Phys. Rev. B 100, 165417 (2019).

    Article  ADS  Google Scholar 

  27. W. Choi, I. Akhtar, D. Kang, Y. J. Lee, J. Jung, Y. H. Kim, C. H. Lee, D. J. Hwang, and Y. Seo, Nano Lett. 20, 1934 (2020).

    Article  ADS  Google Scholar 

  28. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, Nat. Mater. 13, 1135 (2014).

    Article  ADS  Google Scholar 

  29. M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, J. He-Hau, W. H. Chang, K. Suenaga, and L. J. Li, Science 349, 524 (2015).

    Article  ADS  Google Scholar 

  30. J. Zhou, J. Yang, and Z. Wei, J. Semicond. 41, 080401 (2020).

    Article  ADS  Google Scholar 

  31. Y. Cui, B. Li, J. B. Li, and Z. M. Wei, Sci. China-Phys. Mech. Astron. 61, 016801 (2018).

    Article  ADS  Google Scholar 

  32. X. Jing, Y. Illarionov, E. Yalon, P. Zhou, T. Grasser, Y. Shi, and M. Lanza, Adv. Funct. Mater. 30, 1901971 (2020).

    Article  Google Scholar 

  33. Z. D. Luo, M. M. Yang, Y. Liu, and M. Alexe, Adv. Mater. 33, 2005620 (2021).

    Article  Google Scholar 

  34. L. Kong, Y. Chen, and Y. Liu, Nano Res. 14, 1768 (2021).

    Article  Google Scholar 

  35. M. G. Moinuddin, A. H. Lone, S. Shringi, S. Srinivasan, and S. K. Sharma, IEEE Trans. Electron Devices 67, 125 (2020).

    Article  ADS  Google Scholar 

  36. S. Shi, Y. Feng, B. Li, H. Zhang, Q. Li, Z. Mo, X. Zhou, Z. Lu, W. Dang, X. Lin, L. Zhang, Z. Zhang, W. Deng, J. Li, M. Zhong, B. Li, and X. Duan, Appl. Phys. Lett. 120, 081101 (2022).

    Article  ADS  Google Scholar 

  37. Q. Li, Q. Tao, Y. Chen, L. Kong, Z. Shu, H. Duan, L. Liao, and Y. Liu, Int. J. Extrem. Manuf. 3, 045103 (2021).

    Article  Google Scholar 

  38. P. Perumal, R. K. Ulaganathan, R. Sankar, Y. M. Liao, T. M. Sun, M. W. Chu, F. C. Chou, Y. T. Chen, M. H. Shih, and Y. F. Chen, Adv. Funct. Mater. 26, 3630 (2016).

    Article  Google Scholar 

  39. Z. R. Kudrynskyi, X. Wang, J. Sutcliffe, M. A. Bhuiyan, Y. Fu, Z. Yang, O. Makarovsky, L. Eaves, A. Solomon, V. T. Maslyuk, Z. D. Kovalyuk, L. Zhang, and A. Patanè, Adv. Funct. Mater. 30, 1908092 (2020).

    Article  Google Scholar 

  40. X. Zhu, H. Liu, L. Liu, L. Ren, W. Li, L. Fang, X. Chen, L. Xie, Y. Jing, J. Chen, S. Liu, F. Ouyang, Y. Zhou, and X. Xiong, Chem. Mater. 33, 3851 (2021).

    Article  Google Scholar 

  41. X. Song, S. N. Schneider, G. Cheng, J. F. Khoury, M. Jovanovic, N. Yao, and L. M. Schoop, Chem. Mater. 33, 8070 (2021).

    Article  Google Scholar 

  42. D. Zhang, C. Yi, C. Ge, W. Shu, B. Li, X. Duan, A. Pan, and X. Wang, Chin. Phys. B 30, 097601 (2021).

    Article  ADS  Google Scholar 

  43. C. F. van Bruggen, M. B. Vellinga, and C. Haas, J. Solid State Chem. 2, 303 (1970).

    Article  ADS  Google Scholar 

  44. F. Cui, X. Zhao, J. Xu, B. Tang, Q. Shang, J. Shi, Y. Huan, J. Liao, Q. Chen, Y. Hou, Q. Zhang, S. J. Pennycook, and Y. Zhang, Adv. Mater. 32, 1905896 (2020).

    Article  Google Scholar 

  45. J. Chu, Y. Zhang, Y. Wen, R. Qiao, C. Wu, P. He, L. Yin, R. Cheng, F. Wang, Z. Wang, J. Xiong, Y. Li, and J. He, Nano Lett. 19, 2154 (2019).

    Article  ADS  Google Scholar 

  46. F. Cui, X. Zhao, B. Tang, L. Zhu, Y. Huan, Q. Chen, Z. Liu, and Y. Zhang, Small 18, 2105744 (2022).

    Article  Google Scholar 

  47. L. Xie, J. Wang, J. Li, C. Li, Y. Zhang, B. Zhu, Y. Guo, Z. Wang, and K. Zhang, Adv. Electron. Mater. 7, 2000962 (2021).

    Article  Google Scholar 

  48. P. E. Blöchl, C. J. Först, and J. Schimpl, Bull. Mater. Sci. 26, 33 (2003).

    Article  Google Scholar 

  49. P. Steneteg, I. A. Abrikosov, V. Weber, and A. M. N. Niklasson, Phys. Rev. B 82, 075110 (2010), arXiv: 1006.2710.

    Article  ADS  Google Scholar 

  50. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  51. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  52. M. I. B. Utama, Q. Zhang, J. Zhang, Y. Yuan, F. J. Belarre, J. Arbiol, and Q. Xiong, Nanoscale 5, 3570 (2013).

    Article  ADS  Google Scholar 

  53. W. Yang, A. L. Coughlin, L. Webster, G. Ye, K. Lopez, H. A. Fertig, R. He, J. A. Yan, and S. Zhang, 2D Mater. 6, 035029 (2019).

    Article  Google Scholar 

  54. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).

    Article  Google Scholar 

  55. B. Tang, X. Wang, M. Han, X. Xu, Z. Zhang, C. Zhu, X. Cao, Y. Yang, Q. Fu, J. Yang, X. Li, W. Gao, J. Zhou, J. Lin, and Z. Liu, Nat. Electron. 5, 224 (2022).

    Article  Google Scholar 

  56. X. Zhao, P. Song, C. Wang, A. C. Riis-Jensen, W. Fu, Y. Deng, D. Wan, L. Kang, S. Ning, J. Dan, T. Venkatesan, Z. Liu, W. Zhou, K. S. Thygesen, X. Luo, S. J. Pennycook, and K. P. Loh, Nature 581, 171 (2020).

    Article  ADS  Google Scholar 

  57. B. Li, T. Xing, M. Zhong, L. Huang, N. Lei, J. Zhang, J. Li, and Z. Wei, Nat. Commun. 8, 1958 (2017).

    Article  ADS  Google Scholar 

  58. Y. Feng, N. Liu, and G. Gao, Appl. Phys. Lett. 118, 112407 (2021).

    Article  ADS  Google Scholar 

  59. L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. T. Lee, Adv. Funct. Mater. 25, 2910 (2015).

    Article  Google Scholar 

  60. M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Chem. Soc. Rev. 44, 3691 (2015).

    Article  Google Scholar 

  61. D. Kufer, and G. Konstantatos, Nano Lett. 15, 7307 (2015).

    Article  ADS  Google Scholar 

  62. M. G. Moinuddin, S. Srinivasan, and S. K. Sharma, Adv. Electron. Mater. 7, 2001116 (2021).

    Article  Google Scholar 

  63. P. Vaqueiro, A. V. Powell, A. I. Coldea, C. A. Steer, I. M. Marshall, S. J. Blundell, J. Singleton, and T. Ohtani, Phys. Rev. B 64, 132402 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51872086, 62174051, 51991340, and 51991343), the Natural Science Foundation of Hunan Province (Grant No. 2020JJ1001), the Hunan Province “Huxiang Talents” Project (Grant No. 2021RC3038), the Double First-Class Initiative of Hunan University (Grant No. 531109100004), and the Shenzhen Basic Research Project (Grant No. JCYJ20210324142012035).

Supporting Information

The supporting information is available online at http://phys.scichina.com and http://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liu, C., Song, L. et al. Promoting the optoelectronic and ferromagnetic properties of Cr2S3 nanosheets via Se doping. Sci. China Phys. Mech. Astron. 65, 276811 (2022). https://doi.org/10.1007/s11433-022-1914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1914-2

Navigation