Skip to main content
Log in

Probing new physics in dimension-8 neutral gauge couplings at e+e colliders

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Neutral triple gauge couplings (nTGCs) are absent in the standard model effective theory up to dimension-6 operators, but could arise from dimension-8 effective operators. In this work, we study the pure gauge operators of dimension-8 that contribute to nTGCs and are independent of the dimension-8 operator involving the Higgs doublet. We show that the pure gauge operators generate both ZγZ* and Zγγ* vertices with rapid energy dependence ∝ E5, which can be probed sensitively via the reaction e+e. We demonstrate that measuring the nTGCs via the reaction e+e followed by \(Z\rightarrow q\bar{q}\) decays can probe the new physics scales of dimension-8 pure gauge operators up to the range (1-5) TeV at the CEPC, FCC-ee and ILC colliders with \(\sqrt{s}=(0.25-1)\) TeV, and up to the range (10–16) TeV at CLIC with \(\sqrt{s}=(3-5)\) TeV, assuming in each case an integrated luminosity of 5 ab−1. We compare these sensitivities with the corresponding probes of the dimension-8 nTGC operators involving Higgs doublets and the dimension-8 fermionic contact operators that contribute to the e+e vertex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Buchmüller, and D. Wyler, Nucl. Phys. B 268, 621 (1986).

    ADS  Google Scholar 

  2. B. Grzadkowski, M. Iskrzyński, M. Misiak, and J. Rosiek, J. High Energ. Phys. 2010(10), 85 (2010).

    ADS  Google Scholar 

  3. J. Ellis, Int. J. Mod. Phys. A 33, 1830003 (2018); J. Ellis, arXiv: 1810.11263.

    ADS  Google Scholar 

  4. S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).

    ADS  Google Scholar 

  5. R. Barbieri, J. Ellis, and M. K. Gaillard, Phys. Lett. B 90, 249 (1980).

    ADS  Google Scholar 

  6. I. Brivio, and M. Trott, Phys. Rep. 793, 1 (2019); D. de Florian, et al. (LHC Higgs Cross Section Working Group), arXiv: 1610.07922.

    ADS  MathSciNet  Google Scholar 

  7. J. Ellis, V. Sanz, and T. You, J. High Energ. Phys. 2014(7), 36 (2014)

    Google Scholar 

  8. J. Ellis, V. Sanz, and T. You, J. High Energ. Phys. 2015(3), 157 (2015)

    Google Scholar 

  9. H. J. He, J. Ren, and W. Yao, Phys. Rev. D 93, 015003 (2016), arXiv: 1506.03302

    ADS  Google Scholar 

  10. J. Ellis, and T. You, J. High Energ. Phys. 2016(3), 89 (2016)

    Google Scholar 

  11. S. F. Ge, H. J. He, and R. Q. Xiao, J. High Energ. Phys. 2016(10), 7 (2016)

    Google Scholar 

  12. J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina, and L. Silvestrini, J. High Energ. Phys. 2016(12), 135 (2016)

    ADS  Google Scholar 

  13. F. Ferreira, B. Fuks, V. Sanz, and D. Sengupta, Eur. Phys. J. C 77, 675 (2017)

    Google Scholar 

  14. G. Durieux, C. Grojean, J. Gu, and K. Wang, J. High Energ. Phys. 2017(9), 14 (2017)

    Google Scholar 

  15. J. Ellis, P. Roloff, V. Sanz, and T. You, J. High Energ. Phys. 2017(5), 96 (2017)

    Google Scholar 

  16. T. Barklow, K. Fujii, S. Jung, R. Karl, J. List, T. Ogawa, M. E. Peskin, and J. Tian, Phys. Rev. D 97, 053003 (2018), arXiv: 1708.08912

    ADS  Google Scholar 

  17. C. W. Murphy, Phys. Rev. D 97, 015007 (2018), arXiv: 1710.02008

    ADS  Google Scholar 

  18. J. Ellis, C. W. Murphy, V. Sanz, and T. You, J. High Energ. Phys. 2018(6), 146 (2018)

    Google Scholar 

  19. G. N. Remmen, and N. L. Rodd, J. High Energ. Phys. 2019(12), 32 (2019)

    Google Scholar 

  20. A. Gutiérrez-Rodríguez, M. Köksal, A. A. Billur, and M. A. Hernández-Ruíz, J. Phys. G-Nucl. Part. Phys. 47, 055005 (2020), arXiv: 1910.02307

    ADS  Google Scholar 

  21. M. Koksal, A. A. Billur, A. Gutierrez-Rodriguez, and M. A. Hernandez-Ruiz, arXiv: 1910.06747.

  22. B. Henning, X. Lu, T. Melia, and H. Murayama, J. High Energ. Phys. 2017(8), 16 (2017).

    Google Scholar 

  23. G. J. Gounaris, J. Layssac, and F. M. Renard, Phys. Rev. D 65, 017302 (2001)

    ADS  Google Scholar 

  24. G. J. Gounaris, J. Layssac, and F. M. Renard, Phys. Rev. D 62, 073012 (2000), arXiv: hep-ph/0005269.

    ADS  Google Scholar 

  25. C. Degrande, J. High Energ. Phys. 2014(2), 101 (2014).

    Google Scholar 

  26. H. L. Li, Z. Ren, J. Shu, M. L. Xiao, J. H. Yu, and Y. H. Zheng, arXiv: 2005.00008; C. W. Murphy, arXiv: 2005.00059.

  27. J. Ellis, N. E. Mavromatos, and T. You, Phys. Rev. Lett. 118, 261802 (2017), arXiv: 1703.08450.

    ADS  MathSciNet  Google Scholar 

  28. J. Ellis, and S. F. Ge, Phys. Rev. Lett. 121, 041801 (2018), arXiv: 1802.02416.

    ADS  Google Scholar 

  29. J. Ellis, S. F. Ge, H. J. He, and R. Q. Xiao, Chin. Phys. C 44, 063106 (2020), arXiv: 1902.06631.

    ADS  Google Scholar 

  30. A. Senol, H. Denizli, A. Yilmaz, I. Turk Cakir, K. Y. Oyulmaz, O. Karadeniz, and O. Cakir, Nucl. Phys. B 935, 365 (2018), arXiv: 1805.03475.

    ADS  Google Scholar 

  31. C. Hays, A. Martin, V. Sanz, and J. Setford, J. High Energ. Phys. 2019(2), 123 (2019)

    Google Scholar 

  32. G. N. Remmen, and N. L. Rodd, J. High Energ. Phys. 2019(12), 32 (2019); C. Zhang, and S. Y. Zhou, arXiv: 2005.03047; C. Birch-Sykes, N. Darvishi, Y. Peters, and A. Pilaftsis, arXiv: 2007.15599.

    Google Scholar 

  33. F. An, Y. Bai, C. Chen, X. Chen, Z. Chen, J. G. da Costa, Z. Cui, Y. Fang, C. Fu, J. Gao, Y. Gao, Y. Gao, S. Ge, J. Gu, F. Guo, J. Guo, T. Han, S. Han, H. He, X. He, X. He, J. Hu, S. C. Hsu, S. Jin, M. Jing, S. Jyotishmati, K. Ryuta, C. M. Kuo, P. Lai, B. Li, C. Li, G. Li, H. Li, L. Li, S. Li, T. Li, Q. Li, H. Liang, Z. Liang, L. Liao, B. Liu, J. Liu, T. Liu, Z. Liu, X. Lou, L. Ma, B. Mellado, X. Mo, M. Pandurovic, J. Qian, Z. Qian, N. Rompotis, M. Ruan, A. Schuy, L. Shan, J. Shi, X. Shi, S. Su, D. Wang, J. Wang, L. Wang, Y. Wang, Y. Wei, Y. Xu, H. Yang, Y. Yang, W. Yao, D. Yu, K. Zhang, Z. Zhang, M. Zhao, X. Zhao, and N. Zhou, Chin. Phys. C 43, 043002 (2019), arXiv: 1810.09037; M. Abbrescia, et al. (CEPC Study Group), arXiv: 1811.10545.

    ADS  Google Scholar 

  34. A. Abada, et al. (FCC Collaboration), Eur. Phys. J. C 79, 474 (2019).

    ADS  Google Scholar 

  35. K. Fujii, et al. (LCC Physics Working Group), arXiv: 1710.07621; K. Fujii, C. Grojean, M. E. Peskin, T. Barklow, Y. Gao, S. Kanemura, J. List, M. Nojiri, M. Perelstein, R. Poeschl, J. Reuter, F. Simon, T. Tanabe, J. D. Wells, M. Berggren, E. Fullana, J. Fuster, F. Gaede, D. Jeans, A. Irles, S. Jung, S.-I. Kawada, S. Matsumoto, C. Potter, J. Strube, T. Suehara, J. Tian, M. Vos, G. Wilson, H. Yamamoto, R. Yonamine, A. F. Zarnecki, J. Brau, and H. Murayama, arXiv: 2007.03650; M. E. Peskin, in ILC: Open Questions and New Ideas: Proceedings of the Snowmass Energy Frontier Workshop on Open Questions and New Ideas, Fermilab, USA, July 20–22, 2020, https://indico.fnal.gov/event/43963/contributions/190481/.

  36. J. de Blas, et al. (CLIC Collaboration), arXiv: 1812.02093.

  37. M. Tanabashi, et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

    ADS  Google Scholar 

  38. A. M. Sirunyan, et al. (CMS Collaboration), J. Inst. 12, P10003 (2017), arXiv: 1706.04965.

    Google Scholar 

  39. M. Ruan, H. Zhao, G. Li, C. Fu, Z. Wang, X. Lou, D. Yu, V. Boudry, H. Videau, V. Balagura, J. C. Brient, P. Lai, C. M. Kuo, B. Liu, F. An, C. Chen, S. Prell, B. Li, and I. Laketineh, Eur. Phys. J. C 78, 426 (2018), arXiv: 1806.04879; D. Yu, M. Ruan, V. Boudry, and H. Videau, Eur. Phys. J. C 77, 591 (2017), arXiv: 1701.07542; M. Abbrescia, et al. (CEPC Study Group), arXiv: 1811.10545.

    ADS  Google Scholar 

  40. K. Fujii, et al. (The Linear Collider Collaboration Physics WG), arXiv: 1801.02840.

  41. H. J. He, Y. P. Kuang, and C. P. Yuan, in Global Analysis for Probing Electroweak Symmetry Breaking Mechanism at High Energy Colliders: Proceedings of the Workshop on Physics at the TeV Energy Scale, Beijing, China, July 15–26, 1996 (Gordon and Breach, New York, 1996), p. 119, arXiv: hep-ph/9704276, and DESY-97–056

    Google Scholar 

  42. H. J. He, and W. B. Kilgore, Phys. Rev. D 55, 1515 (1997), arXiv: hep-ph/9609326

    ADS  Google Scholar 

  43. H. J. He, Y. P. Kuang, and C. P. Yuan, Phys. Rev. D 51, 6463 (1995), arXiv: hep-ph/9410400

    ADS  Google Scholar 

  44. H. J. He, Y. P. Kuang, and C. P. Yuan, Phys. Rev. D 55, 3038 (1997), arXiv: hep-ph/9611316

    ADS  Google Scholar 

  45. H. J. He, Y. P. Kuang, and X. Li, Phys. Lett. B 329, 278 (1994)

    ADS  Google Scholar 

  46. H. J. He, Y. P. Kuang, and X. Li, Phys. Rev. D 49, 4842 (1994)

    ADS  Google Scholar 

  47. H. J. He, Y. P. Kuang, and X. Li, Phys. Rev. Lett. 69, 2619 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Ellis, Hong-Jian He or Rui-Qing Xiao.

Additional information

We thank Manqi Ruan, Philipp Roloff, Michael Peskin, Tao Han, Tim Barklow and Jie Gao for useful discussions. The work of John Ellis was supported in part by United Kingdom STFC (Grant No. ST/P000258/1), in part by the Estonian Research Council via a Mobilitas Pluss grant, and in part by the TDLI distinguished visiting fellow programme. The work of Hong-Jian He and Rui-Qing Xiao was supported in part by the National Natural Science Foundation of China (Grant Nos. 11675086, and 11835005). Hong-Jian He is also supported in part by the CAS Center for Excellence in Particle Physics (CCEPP), the National Key R&D Program of China (Grant No. 2017YFA0402204), the Key Laboratory for Particle Physics, Astrophysics and Cosmology (Ministry of Education), and by the Office of Science and Technology, Shanghai Municipal Government (Grant No. 16DZ2260200).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, J., He, HJ. & Xiao, RQ. Probing new physics in dimension-8 neutral gauge couplings at e+e colliders. Sci. China Phys. Mech. Astron. 64, 221062 (2021). https://doi.org/10.1007/s11433-020-1617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1617-3

Navigation