Skip to main content
Log in

Enhanced entanglement and asymmetric EPR steering between magnons

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The generation and manipulation of strong entanglement and Einstein-Podolsky-Rosen (EPR) steering in macroscopic systems are outstanding challenges in modern physics. Especially, the observation of asymmetric EPR steering is important for both its fundamental role in interpreting the nature of quantum mechanics and its application as resource for the tasks where the levels of trust at different parties are highly asymmetric. Here, we study the entanglement and EPR steering between two macroscopic magnons in a hybrid ferrimagnet—light system. In the absence of light, the two types of magnons on the two sublattices can be entangled, but no quantum steering occurs when they are damped with the same rates. In the presence of the cavity field, the entanglement can be significantly enhanced, and strong two-way asymmetric quantum steering appears between two magnons with equal dissipation. This is very different from the conventional protocols to produce asymmetric steering by imposing additional unbalanced losses or noises on the two parties at the cost of reducing steerability. The essential physics is well understood by the unbalanced population of acoustic and optical magnons under the cooling effect of cavity photons. Our finding may provide a novel platform to manipulate the quantum steering and the detection of bi-party steering provides a knob to probe the magnetic damping on each sublattice of a magnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referenes

  1. D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and Y. Nakamura, Appl. Phys. Express 12, 070101 (2019), arXiv: 1902.03024.

    ADS  Google Scholar 

  2. Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Science 349, 405 (2015), arXiv: 1410.3781.

    ADS  MathSciNet  Google Scholar 

  3. X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Sci. Adv. 2, e1501286 (2016), arXiv: 1511.03680.

    ADS  Google Scholar 

  4. O. O. Soykal, and M. E. Flattá, Phys. Rev. Lett. 104, 077202 (2010), arXiv: 0907.3926.

    ADS  Google Scholar 

  5. H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, Phys. Rev. Lett. 111, 127003 (2013), arXiv: 1207.6039.

    ADS  Google Scholar 

  6. X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Phys. Rev. Lett. 113, 156401 (2014), arXiv: 1405.7062.

    ADS  Google Scholar 

  7. Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Phys. Rev. Lett. 113, 083603 (2014), arXiv: 1405.1913.

    ADS  Google Scholar 

  8. J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Phys. Rev. Lett. 117, 133602 (2016), arXiv: 1607.02985.

    ADS  Google Scholar 

  9. A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, and K. Usami, Phys. Rev. Lett. 120, 133602 (2018), arXiv: 1711.09319.

    ADS  Google Scholar 

  10. M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, Phys. Rev. Appl. 2, 054002 (2014), arXiv: 1408.2905.

    ADS  Google Scholar 

  11. J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, Phys. Rev. B 93, 144420 (2016), arXiv: 1512.07773.

    ADS  Google Scholar 

  12. N. Kostylev, M. Goryachev, and M. E. Tobar, Appl. Phys. Lett. 108, 062402 (2016), arXiv: 1508.04967.

    ADS  Google Scholar 

  13. M. Harder, Y. Yang, B. M. Yao, C. H. Yu, J. W. Rao, Y. S. Gui, R. L. Stamps, and C. M. Hu, Phys. Rev. Lett. 121, 137203 (2018), arXiv: 1809.01233.

    ADS  Google Scholar 

  14. W. Yu, J. Wang, H. Y. Yuan, and J. Xiao, Phys. Rev. Lett. 123, 227201 (2019), arXiv: 1907.06222.

    ADS  Google Scholar 

  15. X. Zhang, K. Ding, X. Zhou, J. Xu, and D. Jin, Phys. Rev. Lett. 123, 237202 (2019), arXiv: 1906.00044.

    ADS  Google Scholar 

  16. Y. P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, Phys. Rev. Lett. 120, 057202 (2018), arXiv: 1707.06509.

    ADS  Google Scholar 

  17. Y. P. Wang, J. W. Rao, Y. Yang, P. C. Xu, Y. S. Gui, B. M. Yao, J. Q. You, and C. M. Hu, Phys. Rev. Lett. 123, 127202 (2019), arXiv: 1908.07907.

    ADS  Google Scholar 

  18. Z. X. Liu, H. Xiong, and Y. Wu, Phys. Rev. B 100, 134421 (2019), arXiv: 1910.03738.

    ADS  Google Scholar 

  19. R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, Phys. Rev. B 93, 174427 (2016), arXiv: 1601.03908.

    ADS  Google Scholar 

  20. X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, Nat. Commun. 6, 8914 (2015), arXiv: 1507.02791.

    ADS  Google Scholar 

  21. A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Nat. Phys. 11, 453 (2015).

    Google Scholar 

  22. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009), arXiv: quant-ph/0702225.

    ADS  Google Scholar 

  23. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, Rev. Mod. Phys. 81, 1727 (2009), arXiv: 0806.0270.

    ADS  Google Scholar 

  24. R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, Rev. Mod. Phys. 92, 015001 (2020), arXiv: 1903.06663.

    ADS  Google Scholar 

  25. E. Schrödinger, Math. Proc. Camb. Phil. Soc. 31, 555 (1935).

    ADS  Google Scholar 

  26. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    ADS  Google Scholar 

  27. M. D. Reid, Phys. Rev. A 40, 913 (1989).

    ADS  Google Scholar 

  28. H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402 (2007), arXiv: quant-ph/0612147.

    ADS  MathSciNet  Google Scholar 

  29. N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, and P. K. Lam, Optica 3, 634 (2016).

    ADS  Google Scholar 

  30. S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, Nat. Phys. 11, 167 (2015), arXiv: 1412.7212.

    Google Scholar 

  31. Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, Phys. Rev. Lett. 115, 180502 (2015), arXiv: 1410.1041.

    ADS  Google Scholar 

  32. C. M. Li, K. Chen, Y. N. Chen, Q. Zhang, Y. A. Chen, and J. W. Pan, Phys. Rev. Lett. 115, 010402 (2015), arXiv: 1501.01452.

    ADS  Google Scholar 

  33. W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003), arXiv: quant-ph/0105127.

    ADS  Google Scholar 

  34. F. Fröwis, P. Sekatski, W. Dür, N. Gisin, and N. Sangouard, Rev. Mod. Phys. 90, 025004 (2018), arXiv: 1706.06173.

    ADS  Google Scholar 

  35. A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013), arXiv: 1204.4325.

    ADS  Google Scholar 

  36. H. Y. Yuan, P. Yan, S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, Phys. Rev. Lett. 124, 053602 (2020), arXiv: 1905.11117.

    ADS  Google Scholar 

  37. J. Li, S. Y. Zhu, and G. S. Agarwal, Phys. Rev. Lett. 121, 203601 (2018), arXiv: 1807.07158.

    ADS  Google Scholar 

  38. Z. Zhang, M. O. Scully, and G. S. Agarwal, Phys. Rev. Res. 1, 023021 (2019), arXiv: 1904.04167.

    Google Scholar 

  39. H. Y. Yuan, S. Zheng, Z. Ficek, Q. Y. He, and M. H. Yung, Phys. Rev. B 101, 014419 (2020), arXiv: 1903.02484.

    ADS  Google Scholar 

  40. H. Y. Yuan, and X. R. Wang, Appl. Phys. Lett. 110, 082403 (2017), arXiv: 1702.07977.

    ADS  Google Scholar 

  41. T. Holstein, and H. Primakoff, Phys. Rev. 58, 1098 (1940).

    ADS  Google Scholar 

  42. E. X. DeJesus, and C. Kaufman, Phys. Rev. A 35, 5288 (1987).

    ADS  MathSciNet  Google Scholar 

  43. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007), arXiv: quant-ph/0609197.

    ADS  Google Scholar 

  44. G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. A 70, 022318 (2004), arXiv: quant-ph/0402124.

    ADS  Google Scholar 

  45. I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, Phys. Rev. Lett. 114, 060403 (2015), arXiv: 1410.1637.

    ADS  Google Scholar 

  46. A. Rényi, in Proceedings of the Fourth Berkeley Symposium on Mathematics, Berkeley, 20 June–30 July 1960, edited by J. Neyman (University of California Press, Berkeley, 1961), pp. 547–561.

  47. A. Heuer, R. Menzel, and P. W. Milonni, Phys. Rev. Lett. 114, 053601 (2015), arXiv: 1409.5696.

    ADS  Google Scholar 

  48. T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Science 342, 710 (2013).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong-Yi He.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11975026, 61475007, and 61704071), the National Key Research and Development Program of China (Grant Nos. 2018YFB1107200, and 2016YFA0301302), the Key Research and Development Program of Guangzhou Province (Grant No. 2018B030329001), and the Beijing Natural Science Foundation (Grant No. Z190005).

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, SS., Sun, FX., Yuan, HY. et al. Enhanced entanglement and asymmetric EPR steering between magnons. Sci. China Phys. Mech. Astron. 64, 210311 (2021). https://doi.org/10.1007/s11433-020-1587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1587-5

Navigation