Skip to main content
Log in

Ground state properties and potential energy surfaces of 270Hs from multidimensionally-constrained relativistic mean field model

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We study the ground state properties, potential energy curves and potential energy surfaces of the superheavy nucleus 270Hs by using the multidimensionally-constrained relativistic mean-field model with the effective interaction PC-PK1. The binding energy, size and shape as well as single particle shell structure corresponding to the ground state of this nucleus are obtained. 270Hs is well deformed and exhibits deformed doubly magic feature in the single neutron and proton level schemes. One-dimensional potential energy curves and two-dimensional potential energy surfaces are calculated for 270Hs with various spatial symmetries imposed. We investigate in detail the effects of the reflection asymmetric and triaxial distortions on the fission barrier and fission path of 270Hs. When the axial symmetry is imposed, the reflection symmetric and reflection asymmetric fission barriers both show a double-hump structure and the former is higher. However, when triaxial shapes are allowed the reflection symmetric barrier is lowered very much and then the reflection symmetric fission path becomes favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Hamilton, S. Hofmann, and Y. T. Oganessian, Annu. Rev. Nucl. Part. Sci. 63, 383 (2013).

    ADS  Google Scholar 

  2. W. Nazarewicz, Nat. Phys. 14, 537 (2018).

    Google Scholar 

  3. S. A. Giuliani, Z. Matheson, W. Nazarewicz, E. Olsen, P. G. Reinhard, J. Sadhukhan, B. Schuetrumpf, N. Schunck, and P. Schwerdtfeger, Rev. Mod. Phys. 91, 011001 (2019).

    ADS  Google Scholar 

  4. W. D. Myers, and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).

    Google Scholar 

  5. C. Y. Wong, Phys. Lett. 21, 688 (1966).

    ADS  Google Scholar 

  6. A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Phys. Lett. 22, 500 (1966).

    ADS  Google Scholar 

  7. H. Meldner, Ark. Fys. 36, 593 (1967).

    Google Scholar 

  8. U. Mosel, and W. Greiner, Z. Phys. 222, 261 (1969).

    ADS  Google Scholar 

  9. S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, I. L. Lamm, P. Möller, and B. Nilsson, Nucl. Phys. A 131, 1 (1969).

    ADS  Google Scholar 

  10. S. Hofmann, and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).

    ADS  Google Scholar 

  11. K. Morita, Nucl. Phys. A 944, 30 (2015).

    ADS  Google Scholar 

  12. Y. T. Oganessian, A. Sobiczewski, and G. M. Ter-Akopian, Phys. Scr. 92, 023003 (2017).

    ADS  Google Scholar 

  13. K. Rutz, M. Bender, T. Burvenich, T. Schilling, P. G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C 56, 238 (1997).

    ADS  Google Scholar 

  14. W. Zhang, J. Meng, S. Q. Zhang, L. S. Geng, and H. Toki, Nucl. Phys. A 753, 106 (2005).

    ADS  Google Scholar 

  15. A. Sobiczewski, and K. Pomorski, Prog. Particle Nucl. Phys. 58, 292 (2007).

    ADS  Google Scholar 

  16. X.-R. Zhou, C. Qiu, and H. Sagawa, in Effect of Tensor Interaction on the Shell Structure of Superheavy Nuclei: Nuclear Structure in China 2010—Proceedings of the 13th National Conference on Nuclear Structure in China, edited by H.-B. Bai, J. Meng, E.-G. Zhao, and S.-G. Zhou, Chi-Feng, Inner Mongolia, China, 24–30 July 2010, (World Scientific, Singapore, 2011), pp. 259–267.

  17. J. J. Li, W. H. Long, J. Margueron, and N. Van Giai, Phys. Lett. B 732, 169 (2014), arXiv: 1303.2765.

    ADS  Google Scholar 

  18. Q. Mo, M. Liu, and N. Wang, Phys. Rev. C 90, 024320 (2014), arXiv: 1408.4872.

    ADS  Google Scholar 

  19. A. V. Afanasjev, S. E. Agbemava, and A. Gyawali, Phys. Lett. B 782, 533 (2018), arXiv: 1804.06395.

    ADS  Google Scholar 

  20. S. E. Agbemava, A. V. Afanasjev, A. Taninah, and A. Gyawali, Phys. Rev. C 99, 034316 (2019), arXiv: 1902.10108.

    ADS  Google Scholar 

  21. P. Moller, S. G. Nilsson, and J. R. Nix, Nucl. Phys. A 229, 292 (1974).

    ADS  Google Scholar 

  22. S. Čwiok, V. V. Pashkevich, J. Dudek, and W. Nazarewicz, Nucl. Phys. A 410, 254 (1983).

    ADS  Google Scholar 

  23. Z. Patyk, J. Skalski, A. Sobiczewski, and S. Ćwiok, Nucl. Phys. A 502, 591 (1989).

    ADS  Google Scholar 

  24. Z. Patyk, and A. Sobiczewski, Nucl. Phys. A 533, 132 (1991).

    ADS  Google Scholar 

  25. R. Smolanczuk, J. Skalski, and A. Sobiczewski, Phys. Rev. C 52, 1871 (1995).

    ADS  Google Scholar 

  26. J. Dvorak, W. Brüchle, M. Chelnokov, R. Dressler, C. E. Dullmann, K. Eberhardt, V. Gorshkov, E. Jäger, R. Krücken, A. Kuznetsov, Y. Nagame, F. Nebel, Z. Novackova, Z. Qin, M. Schädel, B. Schausten, E. Schimpf, A. Semchenkov, P. Thörle, A. Türler, M. Wegrzecki, B. Wierczinski, A. Yakushev, and A. Yeremin, Phys. Rev. Lett. 97, 242501 (2006).

    ADS  Google Scholar 

  27. Y. T. Oganessian, V. K. Utyonkov, F. S. Abdullin, S. N. Dmitriev, R. Graeger, R. A. Henderson, M. G. Itkis, Y. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, M. A. Ryabinin, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, K. Subotic, A. M. Sukhov, Y. S. Tsyganov, A. Türler, A. A. Voinov, G. K. Vostokin, P. A. Wilk, and A. Yakushev, Phys. Rev. C 87, 034605 (2013).

    ADS  Google Scholar 

  28. V. V. Pashkevich, Nucl. Phys. A 133, 400 (1969).

    ADS  Google Scholar 

  29. P. Möller, J. R. Nix, in Calculation of Fission barriers: Proceedings of the Third IAEA Symposium on Physics and Chemistry of Fission, Rochester, New York, 13–17 August 1973, Vol. 1 (International Atomic Energy Agency, Vienna, 1974), pp. 103–140.

    Google Scholar 

  30. K. Rutz, J. A. Maruhn, P. G. Reinhard, and W. Greiner, Nucl. Phys. A 590, 680 (1995).

    ADS  Google Scholar 

  31. L. M. Robledo, and M. Warda, Int. J. Mod. Phys. E 17, 204 (2008), arXiv: 0710.4411.

    ADS  Google Scholar 

  32. M. Kowal, P. Jachimowicz, and A. Sobiczewski, Phys. Rev. C 82, 014303 (2010).

    ADS  Google Scholar 

  33. Z. P. Li, T. Nikšić, D. Vretenar, P. Ring, and J. Meng, Phys. Rev. C 81, 064321 (2010).

    ADS  Google Scholar 

  34. H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 82, 044303 (2010), arXiv: 1010.1803.

    ADS  Google Scholar 

  35. A. Staszczak, A. Baran, and W. Nazarewicz, Int. J. Mod. Phys. E 20, 552 (2011).

    ADS  Google Scholar 

  36. G. Royer, M. Jaffré, and D. Moreau, Phys. Rev. C 86, 044326 (2012).

    ADS  Google Scholar 

  37. B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 85, 011301 (2012), arXiv: 1110.6769.

    ADS  Google Scholar 

  38. M. Warda, and J. L. Egido, Phys. Rev. C 86, 014322 (2012), arXiv: 1204.5867.

    ADS  Google Scholar 

  39. B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 89, 014323 (2014), arXiv: 1304.2513.

    ADS  Google Scholar 

  40. S. G. Zhou, Phys. Scr. 91, 063008 (2016), arXiv: 1605.00956.

    ADS  Google Scholar 

  41. J. Zhao, B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 95, 014320 (2017), arXiv: 1606.08994.

    ADS  Google Scholar 

  42. B. D. Serot, and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

    Google Scholar 

  43. P. G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).

    ADS  Google Scholar 

  44. P. Ring, Prog. Particle Nucl. Phys. 37, 193 (1996).

    ADS  Google Scholar 

  45. M. Bender, P. H. Heenen, and P. G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    ADS  Google Scholar 

  46. D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

    ADS  Google Scholar 

  47. J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Particle Nucl. Phys. 57, 470 (2006).

    ADS  Google Scholar 

  48. N. Paar, D. Vretenar, E. Khan, and G. Coló, Rep. Prog. Phys. 70, 691 (2007).

    ADS  Google Scholar 

  49. T. Nikšić, D. Vretenar, and P. Ring, Prog. Particle Nucl. Phys. 66, 519 (2011), arXiv: 1102.4193.

    ADS  Google Scholar 

  50. H. Liang, J. Meng, and S. G. Zhou, Phys. Rep. 570, 1 (2015), arXiv: 1411.6774.

    ADS  MathSciNet  Google Scholar 

  51. J. Meng, and S. G. Zhou, J. Phys. G-Nucl. Part. Phys. 42, 093101 (2015), arXiv: 1507.01079.

    ADS  Google Scholar 

  52. J. Meng, Relativistic Density Functional for Nuclear Structure, Vol. 10 of International Review of Nuclear Physics (World Scientific Pub, Singapore, 2016).

    Google Scholar 

  53. Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. 198, 132 (1990).

    ADS  Google Scholar 

  54. P. Ring, Y. K. Gambhir, and G. A. Lalazissis, Comput. Phys. Commun. 105, 77 (1997).

    ADS  Google Scholar 

  55. A. V. Afanasjev, P. Ring, and J. König, Nucl. Phys. A 676, 196 (2000).

    ADS  Google Scholar 

  56. L. S. Geng, J. Meng, and H. Toki, Chin. Phys. Lett. 24, 1865 (2007), arXiv: 0706.0491.

    ADS  Google Scholar 

  57. W. Zhang, Z. P. Li, S. Q. Zhang, and J. Meng, Phys. Rev. C 81, 034302 (2010), arXiv: 1003.2231.

    ADS  Google Scholar 

  58. Y. Y. Wang, and Z. X. Ren, Sci. China-Phys. Mech. Astron. 61, 082012 (2018), arXiv: 1711.07799.

    ADS  MathSciNet  Google Scholar 

  59. B. Qi, H. Jia, C. Liu, and S. Y. Wang, Sci. China-Phys. Mech. Astron. 62, 012012 (2019).

    Google Scholar 

  60. H. J. Xia, X. Y. Wu, H. Mei, and J. M. Yao, Sci. China-Phys. Mech. Astron. 62, 042011 (2019), arXiv: 1811.01486.

    Google Scholar 

  61. M. Warda, J. L. Egido, L. M. Robledo, and K. Pomorski, Phys. Rev. C 66, 014310 (2002).

    ADS  Google Scholar 

  62. S. Karatzikos, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Lett. B 689, 72 (2010), arXiv: 0909.1233.

    ADS  Google Scholar 

  63. Y. Tian, and Z. Y. Ma, Chin. Phys. Lett. 23, 3226 (2006).

    ADS  Google Scholar 

  64. Y. Tian, Z. Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009), arXiv: 0908.1844.

    ADS  Google Scholar 

  65. Y. Tian, Z. Y. Ma, and P. Ring, Phys. Rev. C 79, 064301 (2009), arXiv: 0908.1845.

    ADS  Google Scholar 

  66. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin/Heidelberg/New York, 1980).

    Google Scholar 

  67. J. Zhao, B. N. Lu, D. Vretenar, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 91, 014321 (2015), arXiv: 1404.5466.

    ADS  Google Scholar 

  68. J. Zhao, B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 86, 057304 (2012), arXiv: 1209.6567.

    ADS  Google Scholar 

  69. C. Liu, S. Y. Wang, R. A. Bark, S. Q. Zhang, J. Meng, B. Qi, P. Jones, S. M. Wyngaardt, J. Zhao, C. Xu, S. G. Zhou, S. Wang, D. P. Sun, L. Liu, Z. Q. Li, N. B. Zhang, H. Jia, X. Q. Li, H. Hua, Q. B. Chen, Z. G. Xiao, H. J. Li, L. H. Zhu, T. D. Bucher, T. Dinoko, J. Easton, K. Juhász, A. Kamblawe, E. Khaleel, N. Khumalo, E. A. Lawrie, J. J. Lawrie, S. N. T. Majola, S. M. Mullins, S. Murray, J. Ndayishimye, D. Negi, S. P. Noncolela, S. S. Ntshangase, B. M. Nyakó, J. N. Orce, P. Papka, J. F. Sharpey-Schafer, O. Shirinda, P. Sithole, M. A. Stankiewicz, and M. Wiedeking, Phys. Rev. Lett. 116, 112501 (2016).

    ADS  Google Scholar 

  70. X. C. Chen, J. Zhao, C. Xu, H. Hua, T. M. Shneidman, S. G. Zhou, X. G. Wu, X. Q. Li, S. Q. Zhang, Z. H. Li, W. Y. Liang, J. Meng, F. R. Xu, B. Qi, Y. L. Ye, D. X. Jiang, Y. Y. Cheng, C. He, J. J. Sun, R. Han, C. Y. Niu, C. G. Li, P. J. Li, C. G. Wang, H. Y. Wu, Z. H. Li, H. Zhou, S. P. Hu, H. Q. Zhang, G. S. Li, C. Y. He, Y. Zheng, C. B. Li, H. W. Li, Y. H. Wu, P. W. Luo, and J. Zhong, Phys. Rev. C 94, 021301 (2016).

    ADS  Google Scholar 

  71. B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 84, 014328 (2011), arXiv: 1104.4638.

    ADS  Google Scholar 

  72. B. N. Lu, E. Hiyama, H. Sagawa, and S. G. Zhou, Phys. Rev. C 89, 044307 (2014), arXiv: 1403.5866.

    ADS  Google Scholar 

  73. J. Zhao, B. N. Lu, T. Niksic, and D. Vretenar, Phys. Rev. C 92, 064315 (2015).

    ADS  Google Scholar 

  74. J. Zhao, B. N. Lu, T. Nikšić, D. Vretenar, and S. G. Zhou, Phys. Rev. C 93, 044315 (2016), arXiv: 1603.00992.

    ADS  Google Scholar 

  75. J. Zhao, T. Nikšić, D. Vretenar, and S. G. Zhou, Phys. Rev. C 99, 014618 (2019).

    ADS  Google Scholar 

  76. J. Zhao, J. Xiang, Z.-P. Li, T. Nikšić, D. Vretenar, and S. G. Zhou, Phys. Rev. C 99, 054613 (2019), arXiv: 1902.09535.

    ADS  Google Scholar 

  77. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010), arXiv: 1002.1789.

    ADS  Google Scholar 

  78. P. W. Zhao, and Z. X. Li, Int. J. Mod. Phys. E 27, 1830007 (2018).

    ADS  Google Scholar 

  79. B. H. Sun, P. W. Zhao, and J. Meng, Sci. China-Phys. Mech. Astron. 54, 210 (2011).

    ADS  Google Scholar 

  80. P. W. Zhao, L. S. Song, B. Sun, H. Geissel, and J. Meng, Phys. Rev. C 86, 064324 (2012), arXiv: 1210.5010.

    ADS  Google Scholar 

  81. K. Q. Lu, Z. X. Li, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 91, 027304 (2015), arXiv: 1502.06908.

    ADS  Google Scholar 

  82. X. W. Xia, Y. Lim, P. W. Zhao, H. Z. Liang, X. Y. Qu, Y. Chen, H. Liu, L. F. Zhang, S. Q. Zhang, Y. Kim, and J. Meng, Atomic Data Nucl. Data Tables 121–122, 1 (2018), arXiv: 1704.08906.

    ADS  Google Scholar 

  83. P. W. Zhao, S. Q. Zhang, and J. Meng, Phys. Rev. C 89, 011301 (2014).

    ADS  Google Scholar 

  84. D. T. Yordanov, D. L. Balabanski, M. L. Bissell, K. Blaum, I. Budinčević, B. Cheal, K. Flanagan, N. Frömmgen, G. Georgiev, C. Geppert, M. Hammen, M. Kowalska, K. Kreim, A. Krieger, J. Meng, R. Neugart, G. Neyens, W. Nörtershäuser, M. M. Rajabali, J. Papuga, S. Schmidt, and P. W. Zhao, Phys. Rev. Lett. 116, 032501 (2016).

    ADS  Google Scholar 

  85. H. Haas, S. P. A. Sauer, L. Hemmingsen, V. Kellö, and P. W. Zhao, Europhys. Lett. 117, 62001 (2017).

    ADS  Google Scholar 

  86. S. Quan, Z. P. Li, D. Vretenar, and J. Meng, Phys. Rev. C 97, 031301 (2018), arXiv: 1803.02142.

    ADS  Google Scholar 

  87. P. W. Zhao, Phys. Lett. B 773, 1 (2017), arXiv: 1706.06127.

    ADS  Google Scholar 

  88. P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Lett. B 699, 181 (2011), arXiv: 1101.4547.

    ADS  Google Scholar 

  89. P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. Lett. 107, 122501 (2011), arXiv: 1105.3622.

    ADS  Google Scholar 

  90. J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Front. Phys. 8, 55 (2013), arXiv: 1301.1808.

    ADS  Google Scholar 

  91. J. Peng, and P. W. Zhao, Phys. Rev. C 91, 044329 (2015).

    ADS  Google Scholar 

  92. J. Meng, and P. W. Zhao, Phys. Scr. 91, 053008 (2016), arXiv: 1604.02213.

    ADS  Google Scholar 

  93. W. Zhang, Z. P. Li, and S. Q. Zhang, Phys. Rev. C 88, 054324 (2013).

    ADS  Google Scholar 

  94. S. E. Agbemava, A. V. Afanasjev, T. Nakatsukasa, and P. Ring, Phys. Rev. C 92, 054310 (2015), arXiv: 1510.07909.

    ADS  Google Scholar 

  95. Z. X. Li, Z. H. Zhang, and P. W. Zhao, Front. Phys. 10, 268 (2015).

    ADS  Google Scholar 

  96. Y. Tian, Z. Ma, and P. Ring, Phys. Rev. C 80, 024313 (2009), arXiv: 0908.1848.

    ADS  Google Scholar 

  97. G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, Chin. Phys. C 41, 030001 (2017).

    ADS  Google Scholar 

  98. W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu, Chin. Phys. C 41, 030002 (2017).

    ADS  Google Scholar 

  99. M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).

    ADS  Google Scholar 

  100. Z. Ren, Phys. Rev. C 65, 051304 (2002).

    ADS  Google Scholar 

  101. Z. Ren, F. Tai, and D. H. Chen, Phys. Rev. C 66, 064306 (2002).

    ADS  Google Scholar 

  102. L. Geng, H. Toki, and J. Meng, Prog. Theor. Phys. 113, 785 (2005).

    ADS  Google Scholar 

  103. L. Geng, Ground State Properties of Finite Nuclei in the Relativistic Mean Field Model, Dissertation for Doctoral Degree (Osaka University, Osaka, 2006).

    Google Scholar 

  104. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88, 024308 (2013).

    ADS  Google Scholar 

  105. H. F. Zhang, Y. Gao, N. Wang, J. Q. Li, E. G. Zhao, and G. Royer, Phys. Rev. C 85, 014325 (2012).

    ADS  Google Scholar 

  106. N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014), arXiv: 1405.2616.

    ADS  Google Scholar 

  107. P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, Atomic Data Nucl. Data Tables 109–110, 1 (2016), arXiv: 1508.06294.

    ADS  Google Scholar 

  108. M. Shi, Z. M. Niu, and H. Z. Liang, Chin. Phys. C 43, 074104 (2019).

    ADS  Google Scholar 

  109. N. Wang, M. Liu, and X. Wu, Phys. Rev. C 81, 044322 (2010), arXiv: 1001.1493.

    ADS  Google Scholar 

  110. N. Wang, Z. Liang, M. Liu, and X. Wu, Phys. Rev. C 82, 044304 (2010), arXiv: 1008.2115.

    ADS  Google Scholar 

  111. M. Liu, N. Wang, Y. Deng, and X. Wu, Phys. Rev. C 84, 014333 (2011), arXiv: 1104.0066.

    ADS  Google Scholar 

  112. J. Meng, and P. Ring, Phys. Rev. Lett. 77, 3963 (1996).

    ADS  Google Scholar 

  113. J. Meng, and P. Ring, Phys. Rev. Lett. 80, 460 (1998).

    ADS  Google Scholar 

  114. J. Meng, Nucl. Phys. A 635, 3 (1998).

    ADS  Google Scholar 

  115. X. Y. Qu, Y. Chen, S. Q. Zhang, P. W. Zhao, I. J. Shin, Y. Lim, Y. Kim, and J. Meng, Sci. China-Phys. Mech. Astron. 56, 2031 (2013), arXiv: 1309.3987.

    ADS  Google Scholar 

  116. M. D. Buhmann, Radial Basis Functions (Cambridge University Press, Cambridge, 2006).

    MATH  Google Scholar 

  117. N. Wang, and M. Liu, Phys. Rev. C 84, 051303 (2011), arXiv: 1111.0354.

    ADS  Google Scholar 

  118. J. S. Zheng, N. Y. Wang, Z. Y. Wang, Z. M. Niu, Y. F. Niu, and B. Sun, Phys. Rev. C 90, 014303 (2014).

    ADS  Google Scholar 

  119. Z. M. Niu, B. H. Sun, H. Z. Liang, Y. F. Niu, and J. Y. Guo, Phys. Rev. C 94, 054315 (2016), arXiv: 1607.02075.

    ADS  Google Scholar 

  120. S. G. Zhou, J. Meng, P. Ring, and E. G. Zhao, Phys. Rev. C 82, 011301 (2010), arXiv: 0909.1600.

    ADS  Google Scholar 

  121. L. Li, J. Meng, P. Ring, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 85, 024312 (2012), arXiv: 1202.0070.

    ADS  Google Scholar 

  122. L. L. Li, J. Meng, P. Ring, E. G. Zhao, and S. G. Zhou, Chin. Phys. Lett. 29, 042101 (2012), arXiv: 1203.1363.

    ADS  Google Scholar 

  123. X. X. Sun, J. Zhao, and S. G. Zhou, Phys. Lett. B 785, 530 (2018), arXiv: 1807.04991.

    ADS  Google Scholar 

  124. Q. Z. Chai, W. J. Zhao, M. L. Liu, and H. L. Wang, Chin. Phys. C 42, 054101 (2018), arXiv: 1803.04616.

    ADS  Google Scholar 

  125. P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, and S. Åberg, Phys. Rev. C 79, 064304 (2009).

    ADS  Google Scholar 

  126. N. Dubray, and D. Regnier, Comput. Phys. Commun. 183, 2035 (2012), arXiv: 1112.4196.

    ADS  Google Scholar 

  127. Z. Matheson, S. A. Giuliani, W. Nazarewicz, J. Sadhukhan, and N. Schunck, Phys. Rev. C 99, 041304 (2019), arXiv: 1812.06490.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShanGui Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Lu, B. & Zhou, S. Ground state properties and potential energy surfaces of 270Hs from multidimensionally-constrained relativistic mean field model. Sci. China Phys. Mech. Astron. 63, 212011 (2020). https://doi.org/10.1007/s11433-019-9422-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9422-1

Keywords

Navigation