Skip to main content
Log in

Forecast for weighing neutrinos in cosmology with SKA

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We investigate what role the SKA neutral hydrogen (HI) intensity mapping (IM) and galaxy sky surveys will play in weighing neutrinos in cosmology. We use the simulated data of the baryon acoustic oscillation (BAO) measurements from the HI surveys based on SKA1 (IM) and SKA2 (galaxy) to do the analysis. For the current observations, we use the Planck 2015 cosmic microwave background (CMB) anisotropies observation, the optical BAO measurements, the type Ia supernovae (SN) observation (Pantheon compilation), and the latest H0 measurement. We consider three mass ordering cases for massive neutrinos, i.e., the normal hierarchy (NH), inverted hierarchy (IH), and degenerate hierarchy (DH) cases. It is found that the SKA observation can significantly improve the constraints on Ωm and H0. Compared to the current observation, the SKA1 data can improve the constraints on Ωm by about 33%, and on H0 by about 36%; the SKA2 data can improve the constraints on Ωm by about 58%, and on H0 by about 66%. It is also found that the SKA observation can only slightly improve the constraints on ∑mv. Compared to the current observation, the SKA1 data can improve the constraints on ∑mv by about 4%, 3%, and 10%, for the NH, IH, and DH cases, respectively; the SKA2 data can improve the constraints on ∑mv by about 7%, 7%, and 16%, for the NH, IH, and DH cases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aghanim, et al. (Planck Collaboration), arXiv: 1807.06209.

  2. P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 571, A16 (2014), arXiv: 1303.5076.

    Article  Google Scholar 

  3. P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016), arXiv: 1502.01589.

    Article  Google Scholar 

  4. X. Zhang, Sci. China-Phys. Mech. Astron. 62, 110431 (2019) arXiv: 1905.11122.

    Article  ADS  Google Scholar 

  5. X. P. Wu, et al. (Chinese SKA Science Team), Chinese SKA Science Book (in Chinese) (Science Press, Beijing, 2019).

    Google Scholar 

  6. P. Bull, S. Camera, A. Raccanelli, C. Blake, P. G. Ferreira, M. G. Santos and D. J. Schwarz, arXiv: 1501.04088.

  7. A. Raccanelli, P. Bull, S. Camera, D. Bacon, C. Blake, O. Dore, P. Ferreira, R. Maartens, M. Santos, M. Viel, and G. B. Zhao, arXiv: 1501.03821.

  8. G. B. Zhao, D. Bacon, R. Maartens, M. Santos, and A. Raccanelli, arXiv: 1501.03840.

  9. D. J. Bacon, et al. (SKA Collaboration), arXiv: 1811.02743.

  10. T. Chen, R. A. Battye, A. A. Costa, C. Dickinson, and S. E. Harper, arXiv: 1907.12132.

  11. Y. Liu, J. F. Zhang, and X. Zhang, arXiv: 1907.07522.

  12. J. F. Zhang, L. Y. Gao, D. Z. He, and X. Zhang, Phys. Lett. B 799, 135064 (2019), arXiv: 1908.03732.

    Article  Google Scholar 

  13. E. Yohana, Y. C. Li, and Y. Z. Ma, arXiv: 1908.03024.

  14. Y. Xu, X. Wang, and X. Chen, Astrophys. J. 798, 40 (2015) arXiv: 1410.7794.

    Article  ADS  Google Scholar 

  15. Y. Xu, J. Hamann, and X. Chen, Phys. Rev. D 94, 123518 (2016), arXiv: 1607.00817.

    Article  ADS  Google Scholar 

  16. L. F. Wang, X. N. Zhang, J. F. Zhang, and X. Zhang, Phys. Lett. B 782, 87 (2018), arXiv: 1802.04720.

    Article  ADS  Google Scholar 

  17. K. A. Olive, et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  18. Q. G. Huang, K. Wang, and S. Wang, Eur. Phys. J. C 76, 489 (2016), arXiv: 1512.05899.

    Article  ADS  Google Scholar 

  19. S. Wang, Y. F. Wang, D. M. Xia, and X. Zhang, Phys. Rev. D 94, 083519 (2016), arXiv: 1608.00672.

    Article  ADS  Google Scholar 

  20. L. X. Xu, and Q. G. Huang, Sci. China-Phys. Mech. Astron. 61, 039521 (2018) arXiv: 1611.05178.

    Article  ADS  Google Scholar 

  21. L. Feng, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 61, 050411 (2018) arXiv: 1706.06913.

    Article  ADS  Google Scholar 

  22. M. M. Zhao, J. F. Zhang, and X. Zhang, Phys. Lett. B 779, 473 (2018), arXiv: 1710.02391.

    Article  ADS  Google Scholar 

  23. R. Y. Guo, J. F. Zhang, and X. Zhang, Chin. Phys. C 42, 095103 (2018), arXiv: 1803.06910.

    Article  ADS  Google Scholar 

  24. R. Y. Guo, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 2019(02), 054 (2019), arXiv: 1809.02340.

    Article  Google Scholar 

  25. L. Feng, H. L. Li, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 63, 220401 (2020) arXiv: 1903.08848.

    Article  Google Scholar 

  26. S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho, and M. Lattanzi, Phys. Rev. D 96, 123503 (2017), arXiv: 1701.08172.

    Article  ADS  Google Scholar 

  27. L. Feng, D. Z. He, H. L. Li, J. F. Zhang, and X. Zhang, arXiv: 1910.03872.

  28. N. Aghanim, et al. (Planck Collaboration), Astron. Astrophys. 594, A11 (2016), arXiv: 1507.02704.

    Article  Google Scholar 

  29. F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, Mon. Not. R. Astron. Soc. 416, 3017 (2011) arXiv: 1106.3366.

    Article  ADS  Google Scholar 

  30. A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, Mon. Not. R. Astron. Soc. 449, 835 (2015) arXiv: 1409.3242.

    Article  ADS  Google Scholar 

  31. S. Alam, et al. (BOSS Collaboration), Mon. Not. R. Astron. Soc. 470, 2617 (2017) arXiv: 1607.03155.

    Article  ADS  Google Scholar 

  32. D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, R. J. Foley, M. E. Huber, R. Kessler, G. Narayan, A. G. Riess, S. Rodney, E. Berger, D. J. Brout, P. J. Challis, M. Drout, D. Finkbeiner, R. Lunnan, R. P. Kirshner, N. E. Sanders, E. Schlafly, S. Smartt, C. W. Stubbs, J. Tonry, W. M. Wood-Vasey, M. Foley, J. Hand, E. Johnson, W. S. Burgett, K. C. Chambers, P. W. Draper, K. W. Hodapp, N. Kaiser, R. P. Kudritzki, E. A. Magnier, N. Metcalfe, F. Bresolin, E. Gall, R. Kotak, M. McCrum, and K. W. Smith, Astrophys. J. 859, 101 (2018) arXiv: 1710.00845.

    Article  ADS  Google Scholar 

  33. A. G. Riess, S. Casertano, W. Yuan, L. Macri, B. Bucciarelli, M. G. Lattanzi, J. W. MacKenty, J. B. Bowers, W. K. Zheng, A. V. Filippenko, C. Huang, and R. I. Anderson, Astrophys. J. 861, 126 (2018) arXiv: 1804.10655.

    Article  ADS  Google Scholar 

  34. P. Bull, P. G. Ferreira, P. Patel, and M. G. Santos, Astrophys. J. 803, 21 (2015) arXiv: 1405.1452.

    Article  ADS  Google Scholar 

  35. A. Lewis, and S. Bridle, Phys. Rev. D 66, 103511 (2002), arXiv: astroph/0205436.

    Article  ADS  Google Scholar 

  36. Y. Oyama, K. Kohri, and M. Hazumi, J. Cosmol. Astropart. Phys. 2016(02), 008 (2016), arXiv: 1510.03806.

    Article  Google Scholar 

  37. L. C. Olivari, C. Dickinson, R. A. Battye, Y. Z. Ma, A. A. Costa, M. Remazeilles, and S. Harper, Mon. Not. R. Astron. Soc. 473, 4242 (2018) arXiv: 1707.07647.

    Article  ADS  Google Scholar 

  38. T. Sprenger, M. Archidiacono, T. Brinckmann, S. Clesse, and J. Lesgourgues, J. Cosmol. Astropart. Phys. 2019(02), 047 (2019), arXiv: 1801.08331.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875102, 11835009, 11975072, 11690021, and 11522540), the Liaoning Revitalization Talents Program (Grant No. XLYC1905011), the Fundamental Research Funds for the Central Universities (Grant No. N2005030), and the National Program for Support of Top-Notch Young Professionals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JF., Wang, B. & Zhang, X. Forecast for weighing neutrinos in cosmology with SKA. Sci. China Phys. Mech. Astron. 63, 280411 (2020). https://doi.org/10.1007/s11433-019-1516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1516-y

Keywords

Navigation