Skip to main content
Log in

Algorithmic cooling based on cross-relaxation and decoherence-free subspace

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

An Erratum to this article was published on 19 May 2020

This article has been updated

Abstract

Heat-bath algorithmic cooling (HBAC) has been proven to be a powerful and effective method for obtaining high polarization of the target system. Its cooling upper bound has been recently found using a specific algorithm, the partner pairing algorithm (PPA-HBAC). It has been shown that by including cross-relaxation, it is possible to surpass the cooling bounds. Herein, by combining cross-relaxation and decoherence-free subspace, we present a two-qubit reset sequence and then generate a new algorithmic cooling (AC) technique using irreversible polarization compression to further surpass the bound. The proposed two-qubit reset sequence can prepare one of the two qubits to four times the polarization of a single-qubit reset operation in PPA-HBAC for low polarization. When the qubit number is large, the cooling limit of the proposed AC is approximately five times as high as the PPA-HBAC. The results reveal that cross-relaxation and decoherence-free subspace are promising resources to create new AC for higher polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 19 May 2020

    In this work, HengYan Wang and Jian Pan contributed equally to this work. The annotation for the contribution was omitted in the original publication of this paper [1]. It can be conformed in the submitted PDF version of the manuscript. Hence, the sentence ���HengYan Wang and Jian Pan contributed equally to this work.��� should be added.

References

  1. J. H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin, M. Thaning, and K. Golman, Proc. Natl. Acad. Sci. USA 100, 10158 (2003).

    Article  ADS  Google Scholar 

  2. D. A. Hall, D. C. Maus, G. J. Gerfen, S. J. Inati, L. R. Becerra, F. W. Dahlquist, and R. G. Griffin, Science 276, 930 (1997).

    Article  Google Scholar 

  3. W. S. Warren, N. Gershenfeld, and I. Chuang, Science 277, 1688 (1997).

    Article  Google Scholar 

  4. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Nature 464, 45 (2010), arXiv: 1009.2267.

    Article  ADS  Google Scholar 

  5. Z. H. Luo, J. Li, Z. K. Li, L. Y. Hung, Y. D. Wan, X. H. Peng, and J. F. Du, Sci. China-Phys. Mech. Astron. 62, 980311 (2019).

    Article  Google Scholar 

  6. K. Zhang, J. Li, M. Jiang, N. Zhao, and X. H. Peng, Sci. China-Phys. Mech. Astron. 61, 080314 (2018).

    Article  ADS  Google Scholar 

  7. B. Criger, O. Moussa, and R. Laflamme, Phys. Rev. A 85, 044302 (2012), arXiv: 1201.1517.

    Article  ADS  Google Scholar 

  8. P. O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, and R. Vrijen, Proc. Natl. Acad. Sci. 99, 3388 (2002), arXiv: quant-ph/0106093.

    Article  ADS  Google Scholar 

  9. J. M. Fernandez, S. Lloyd, T. Mor, and V. Roychowdhury, Int. J. Quantum Inform. 02, 461 (2004).

    Article  Google Scholar 

  10. L. J. Schulman, T. Mor, and Y. Weinstein, Phys. Rev. Lett. 94, 120501 (2005).

    Article  ADS  Google Scholar 

  11. Y. Elias, J. M. Fernandez, T. Mor, and Y. Weinstein, Isr. J. Chem. 46, 371 (2006).

    Article  Google Scholar 

  12. Y. Elias, T. Mor, and Y. Weinstein, Phys. Rev. A 83, 042340 (2011), arXiv: 1110.5892.

    Article  ADS  Google Scholar 

  13. Y. Atia, Y. Elias, T. Mor, and Y. Weinstein, Phys. Rev. A 93, 012325 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme, Nature 438, 470 (2005), arXiv: quant-ph/0512024.

    Article  ADS  Google Scholar 

  15. C. A. Ryan, O. Moussa, J. Baugh, and R. Laflamme, Phys. Rev. Lett. 100, 140501 (2008), arXiv: 0706.2853.

    Article  ADS  Google Scholar 

  16. D. K. Park, N. A. Rodríguez-Briones, G. R. Fent, R. Rahimi, J. Baugh and R. Laflamme, in Heat Bath Algorithmic Cooling with Spins: Review and Prospects: Electron Spin Resonance (ESR) Based Quantum Computing, edited by T. Takui, L. Berliner, and G. Hanson (Springer, New York, 2016), p. 227.

  17. S. Raeisi, and M. Mosca, Phys. Rev. Lett. 114, 100404 (2015), arXiv: 1407.3232.

    Article  ADS  Google Scholar 

  18. N. A. Rodríguez-Briones, and R. Laflamme, Phys. Rev. Lett. 116, 170501 (2016).

    Article  ADS  Google Scholar 

  19. B. N. Provotorov, Sov. Phys. JETP 15, 611 (1962).

    MathSciNet  Google Scholar 

  20. J. Li, D. Lu, Z. Luo, R. Laflamme, X. Peng, and J. Du, Phys. Rev. A 94, 012312 (2016).

    Article  ADS  Google Scholar 

  21. A. W. Overhauser, Phys. Rev. 89, 689 (1953).

    Article  ADS  Google Scholar 

  22. N. A. Rodríguez-Briones, J. Li, X. Peng, T. Mor, Y. Weinstein, and R. Laflamme, New J. Phys. 19, 113047 (2017), arXiv: 1703.02999.

    Article  ADS  Google Scholar 

  23. D. A. Lidar, in Review of Decoherence-Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling: Quantum Information and Computation for Chemistry, edited by S. Kais (John Wiley & Sons, Hobo-ken, 2014), pp. 295–354.

  24. N. Khaneja, T. Reiss, B. Luy, and S. J. Glaser, J. Magn. Reson. 162, 311 (2003).

    Article  ADS  Google Scholar 

  25. E. Knill, R. Laflamme, R. Martinez, and C. H. Tseng, Nature 404, 368 (2000).

    Article  ADS  Google Scholar 

  26. D. A. Yablonskiy, and E. M. Haacke, Magn. Reson. Med. 32, 749 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WenQiang Zheng or XinHua Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Pan, J., Zheng, W. et al. Algorithmic cooling based on cross-relaxation and decoherence-free subspace. Sci. China Phys. Mech. Astron. 63, 270311 (2020). https://doi.org/10.1007/s11433-019-1492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1492-4

Keywords

Navigation