Skip to main content
Log in

A study of the hydrogen bonds effect on the water density and the liquid-liquid transition

  • Article
  • Special topic: New advances in water and water systems
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We study the hydrogen bonds effect on the water density as a function of temperature and pressure from the supercritical region to the metastable supercooled and amorphous phases. We identify two important thermodynamic thresholds, that is P* ≃ 2 kbar and T* ≃ 315 K, that separate two different water behaviors in terms of hydrogen bonding capability. For T < T* and P < P* the formation and stability of hydrogen bonded local structures are enhanced. The additional analyses of the proton NMR chemical shift and of the relaxation time confirm this evidence and highlight the structure breaking effects of the pressure. The investigation of both structural and dynamical quantities allow us to draw a complete picture of the water properties in terms of the temperature-pressure dependence of hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ball, Chem. Rev. 108, 74 (2008).

    Google Scholar 

  2. P. G. Debenedetti, and H. E. Stanley, Phys. Today 56, 40 (2003).

    Google Scholar 

  3. R. J. Speedy, and C. A. Angell, J. Chem. Phys. 65, 851 (1976).

    ADS  Google Scholar 

  4. C. A. Angell, W. J. Sichina, and M. Oguni, J. Phys. Chem. 86, 998 (1982).

    Google Scholar 

  5. K. Ito, C. T. Moynihan, and C. A. Angell, Nature 398, 492 (1999).

    ADS  Google Scholar 

  6. E. F. Burton, and W. F. Oliver, Proc. R. Soc. Lond. A 153, 166 (1935).

    ADS  Google Scholar 

  7. P. Brüggeller, and E. Mayer, Nature 288, 569 (1980).

    ADS  Google Scholar 

  8. O. Mishima, L. D. Calvert, and E. Whalley, Nature 310, 393 (1984).

    ADS  Google Scholar 

  9. O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76 (1985).

    ADS  Google Scholar 

  10. O. Mishima, J. Chem. Phys. 100, 5910 (1994).

    ADS  Google Scholar 

  11. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992).

    ADS  Google Scholar 

  12. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C. Y. Mou, and S. H. Chen, Proc. Natl. Acad. Sci. USA 104, 424 (2007).

    ADS  Google Scholar 

  13. F. Mallamace, Proc. Natl. Acad. Sci. USA 106, 15097 (2009).

    ADS  Google Scholar 

  14. L. Xu, P. Kumar, S. V. Buldyrev, S. H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Proc. Natl. Acad. Sci. USA 102, 16558 (2005).

    ADS  Google Scholar 

  15. S. H. Chen, F. Mallamace, C. Y. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu, Proc. Natl. Acad. Sci. USA 103, 12974 (2006).

    ADS  Google Scholar 

  16. L. Liu, S. H. Chen, A. Faraone, C. W. Yen, and C. Y. Mou, Phys. Rev. Lett. 95, 117802 (2005).

    ADS  Google Scholar 

  17. E. Lascaris, M. Hemmati, S. V. Buldyrev, H. E. Stanley, and C. A. Angell, J. Chem. Phys. 140, 224502 (2014), arXiv: 1402.4452.

    ADS  Google Scholar 

  18. J. C. Palmer, P. H. Poole, F. Sciortino, and P. G. Debenedetti, Chem. Rev. 118, 9129 (2018).

    Google Scholar 

  19. F. Smallenburg, and F. Sciortino, Phys. Rev. Lett. 115, 015701 (2015), arXiv: 1505.06432.

    ADS  Google Scholar 

  20. F. Mallamace, C. Corsaro, and H. E. Stanley, Proc. Natl. Acad. Sci. USA 110, 4899 (2013).

    ADS  Google Scholar 

  21. F. Mallamace, C. Corsaro, and H. E. Stanley, Sci. Rep. 2, 993 (2012).

    ADS  Google Scholar 

  22. K. H. Kim, A. Spah, H. Pathak, F. Perakis, D. Mariedahl, K. Amann-Winkel, J. A. Sellberg, J. H. Lee, S. Kim, J. Park, K. H. Nam, T. Katayama, and A. Nilsson, Science 358, 1589 (2017).

    MathSciNet  ADS  Google Scholar 

  23. J. D. Bernal, and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).

    ADS  Google Scholar 

  24. J. L. F. Abascal, and C. Vega, J. Chem. Phys. 133, 234502 (2010); 134, 186101 (2011).

    ADS  Google Scholar 

  25. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 47, 441 (1912).

    Google Scholar 

  26. T. Grindley, and J. E. Lind Jr., J. Chem. Phys. 54, 3983 (1971).

    ADS  Google Scholar 

  27. G. S. Kell, J. Chem. Eng. Data 20, 97 (1975).

    Google Scholar 

  28. G. S. Kell, J. Chem. Phys. 62, 3496 (1975).

    ADS  Google Scholar 

  29. C. M. Sorensen, J. Chem. Phys. 79, 1455 (1983).

    ADS  Google Scholar 

  30. D. E. Hare, and C. M. Sorensen, J. Chem. Phys. 84, 5085 (1986); 87, 4840 (1987).

    ADS  Google Scholar 

  31. O. Mishima, J. Chem. Phys. 133, 144503 (2010).

    ADS  Google Scholar 

  32. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C. Y. Mou, and S. H. Chen, Proc. Natl. Acad. Sci. USA 104, 18387 (2007).

    ADS  Google Scholar 

  33. D. Liu, Y. Zhang, C. C. Chen, C. Y. Mou, P. H. Poole, and S. H. Chen, Proc. Natl. Acad. Sci. USA 104, 9570 (2007), arXiv: 0704.2221.

    ADS  Google Scholar 

  34. J. H. Simpson, and H. Y. Carr, Phys. Rev. 111, 1201 (1958).

    ADS  Google Scholar 

  35. K. R. Harris, and P. J. Newitt, J. Chem. Eng. Data 42, 346 (1997).

    Google Scholar 

  36. F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, and H. E. Stanley, Faraday Discuss. 167, 95 (2014).

    ADS  Google Scholar 

  37. N. Matubayasi, C. Wakai, and M. Nakahara, J. Chem. Phys. 107, 9133 (1997); Phys. Rev. Lett. 78, 2573 (1997).

    ADS  Google Scholar 

  38. K. Modig, B. G. Pfrommer, and B. Halle, Phys. Rev. Lett. 90, 075502 (2003).

    ADS  Google Scholar 

  39. D. Sebastiani, and M. Parrinello, ChemPhysChem 3, 675 (2002).

    Google Scholar 

  40. I. M. Svishchev, and P. G. Kusalik, J. Am. Chem. Soc. 115, 8270 (1993).

    Google Scholar 

  41. J. C. Hindman, J. Chem. Phys. 44, 4582 (1966).

    ADS  Google Scholar 

  42. M. Hakala, K. Nygard, S. Manninen, S. Huotari, T. Buslaps, A. Nilsson, L. G. M. Pettersson, and K. Hämäläinen, J. Chem. Phys. 125, 084504 (2006).

    ADS  Google Scholar 

  43. C. A. Angell, J. Shuppert, and J. C. Tucker, J. Phys. Chem. 77, 3092 (1973).

    Google Scholar 

  44. F. Mallamace, C. Corsaro, M. Broccio, C. Branca, N. Gonzalez-Segredo, J. Spooren, S. H. Chen, and H. E. Stanley, Proc. Natl. Acad. Sci. USA 105, 12725 (2008).

    ADS  Google Scholar 

  45. L. Chen, T. Gross, and H.-D. Ludeman, Z. Naturforsch. 55a, 473 (2000).

    ADS  Google Scholar 

  46. F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S. H. Chen, and H. E. Stanley, Proc. Natl. Acad. Sci. USA 107, 22457 (2010).

    ADS  Google Scholar 

  47. M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).

    ADS  Google Scholar 

  48. L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. V. Buldyrev, and H. E. Stanley, Nat. Phys. 5, 565 (2009).

    Google Scholar 

  49. F. H. Stillinger, Science 267, 1935 (1995).

    ADS  Google Scholar 

  50. S. Yip, and M. P. Short, Nat. Mater. 12, 774 (2013).

    ADS  Google Scholar 

  51. Y. Huang, X. Zhang, Z. Ma, W. Li, Y. Zhou, J. Zhou, W. Zheng, and C. Q. Sun, Sci. Rep. 3, 3005 (2013).

    ADS  Google Scholar 

  52. C. Q. Sun, X. Zhang, X. Fu, W. Zheng, J. Kuo, Y. Zhou, Z. Shen, and J. Zhou, J. Phys. Chem. Lett. 4, 3238 (2013).

    Google Scholar 

  53. N. Galamba, J. Phys.-Condens. Matter 29, 015101 (2017).

    ADS  Google Scholar 

  54. E. Sugimura, T. Iitaka, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, Phys. Rev. B 77, 214103 (2008).

    ADS  Google Scholar 

  55. M. Benoit, D. Marx, and M. Parrinello, Nature 392, 258 (1998).

    ADS  Google Scholar 

  56. A. F. Goncharov, V. V. Struzhkin, H. Mao, and R. J. Hemley, Phys. Rev. Lett. 83, 1998 (1999).

    ADS  Google Scholar 

  57. M. Erko, D. Wallacher, A. Hoell, T. Hauss, I. Zizak, and O. Paris, Phys. Chem. Chem. Phys. 14, 3852 (2012).

    Google Scholar 

  58. F. Sciortino, P. Gallo, P. Tartaglia, and S. H. Chen, Phys. Rev. E 54, 6331 (1996).

    ADS  Google Scholar 

  59. F. W. Starr, J. K. Nielsen, and H. E. Stanley, Phys. Rev. Lett. 82, 2294 (1999).

    ADS  Google Scholar 

  60. S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, and L. Xu, Chem. Rev. 116, 7608 (2016).

    Google Scholar 

  61. A. Dehaoui, B. Issenmann, and F. Caupin, Proc. Natl. Acad. Sci. USA 112, 12020 (2015).

    ADS  Google Scholar 

  62. M. De Marzio, G. Camisasca, M. Rovere, and P. Gallo, J. Chem. Phys. 146, 084502 (2017).

    ADS  Google Scholar 

  63. P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, and L. G. M. Pettersson, Chem. Rev. 116, 7463 (2016).

    Google Scholar 

  64. N. Galamba, J. Phys. Chem. B 117, 589 (2013).

    Google Scholar 

  65. W. S. Price, H. Ide, and Y. Arata, J. Phys. Chem. A 103, 448 (1999).

    Google Scholar 

  66. D. Bertolini, M. Cassettari, and G. Salvetti, J. Chem. Phys. 76, 3285 (1982).

    ADS  Google Scholar 

  67. E. W. Lang, and H. D. Lüdemann, Prog. Nucl. Magn. Reson. Spectr. 25, 507 (1993).

    Google Scholar 

  68. F. X. Prielmeier, E. W. Lang, R. J. Speedy, and H. D. Lüdemann, Berichte der Bunsengesellschaft für physikalische Chem. 92, 1111 (1988).

    Google Scholar 

  69. M. Sattig, and M. Vogel, J. Phys. Chem. Lett. 5, 174 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Corsaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallamace, F., Corsaro, C., Fazio, E. et al. A study of the hydrogen bonds effect on the water density and the liquid-liquid transition. Sci. China Phys. Mech. Astron. 62, 107005 (2019). https://doi.org/10.1007/s11433-018-9397-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9397-2

Navigation