Skip to main content
Log in

Heterogeneous oxidization of graphene nanosheets damages membrane

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Graphene-based materials exhibit unique properties that have been sought to utilize for various potential applications. Many studies suggest that graphene-based materials can be cytotoxic, which may be attributed to destructive effects on cell membranes. However, there still are conflicting results regarding interactions between graphene-based materials and lipid membranes. Here, through cryo-electron microscopy (Cryo-EM) and dye-leakage experiments along with in silico methods, we found that graphene oxide nanosheets induce significant membrane damage, while the effect of pristine graphene is negligible. We revealed the importance of heterogeneous oxidization of graphene-based nanosheets in damaging vesicle membranes. Moreover, that not only the oxidization degree but also the oxidization loci and membrane tension play important roles in the cytotoxicity of the graphene-based nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, Trends Biotech. 29, 205 (2011).

    Article  Google Scholar 

  2. C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, Acc. Chem. Res. 46, 2211 (2013).

    Article  Google Scholar 

  3. H. Y. Mao, S. Laurent, W. Chen, O. Akhavan, M. Imani, A. A. Ashkarran, and M. Mahmoudi, Chem. Rev. 113, 3407 (2013).

    Article  Google Scholar 

  4. G. Reina, J. M. González-Domínguez, A. Criado, E. Vázquez, A. Bianco, and M. Prato, Chem. Soc. Rev. 46, 4400 (2017).

    Article  Google Scholar 

  5. D. Kim, J. M. Yoo, H. Hwang, J. Lee, S. H. Lee, S. P. Yun, M. J. Park, M. J. Lee, S. Choi, S. H. Kwon, S. Lee, S. H. Kwon, S. Kim, Y. J. Park, M. Kinoshita, Y. H. Lee, S. Shin, S. R. Paik, S. J. Lee, S. Lee, B. H. Hong, and H. S. Ko, Nat. Nanotech. 13, 812 (2018), arXiv: 1710.07213.

    Article  ADS  Google Scholar 

  6. Z. Liu, J. T. Robinson, X. Sun, and H. Dai, J. Am. Chem. Soc. 130, 10876 (2008).

    Article  Google Scholar 

  7. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, Nano Res. 1, 203 (2008).

    Article  Google Scholar 

  8. K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, Nano Lett. 10, 3318 (2010).

    Article  ADS  Google Scholar 

  9. X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, J. Mater. Chem. 21, 3448 (2011).

    Article  Google Scholar 

  10. A. Servant, A. Bianco, M. Prato, and K. Kostarelos, Bioorg. Med. Chem. Lett. 24, 1638 (2014).

    Article  Google Scholar 

  11. L. Feng, S. Zhang, and Z. Liu, Nanoscale 3, 1252 (2011).

    Article  ADS  Google Scholar 

  12. M. Kalbacova, A. Broz, J. Kong, and M. Kalbac, Carbon 48, 4323 (2010).

    Article  Google Scholar 

  13. H. Yuan, C. Huang, J. Li, G. Lykotrafitis, and S. Zhang, Phys. Rev. E 82, 011905 (2010).

    Article  ADS  Google Scholar 

  14. A. Bianco, Angew. Chem. Int. Ed. 52, 4986 (2013).

    Article  Google Scholar 

  15. R. Zhou, and H. Gao, WIREs Nanomed Nanobiotech. 6, 452 (2014).

    Article  Google Scholar 

  16. X. Zou, L. Zhang, Z. Wang, and Y. Luo, J. Am. Chem. Soc. 138, 2064 (2016).

    Article  Google Scholar 

  17. Q. Zhang, Z. Wu, N. Li, Y. Pu, B. Wang, T. Zhang, and J. Tao, Mater. Sci. Eng.-C 77, 1363 (2017).

    Article  Google Scholar 

  18. O. Akhavan, and E. Ghaderi, ACS Nano 4, 5731 (2010).

    Article  Google Scholar 

  19. W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, and C. Fan, ACS Nano 4, 4317 (2010).

    Article  Google Scholar 

  20. S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen, ACS Nano 5, 6971 (2011).

    Article  Google Scholar 

  21. S. Liu, M. Hu, T. H. Zeng, R. Wu, R. Jiang, J. Wei, L. Wang, J. Kong, and Y. Chen, Langmuir 28, 12364 (2012).

    Article  Google Scholar 

  22. V. T. H. Pham, V. K. Truong, M. D. J. Quinn, S. M. Notley, Y. Guo, V. A. Baulin, M. Al Kobaisi, R. J. Crawford, and E. P. Ivanova, ACS Nano 9, 8458 (2015).

    Article  Google Scholar 

  23. G. Duan, Y. Zhang, B. Luan, J. K. Weber, R. W. Zhou, Z. Yang, L. Zhao, J. Xu, J. Luo, and R. Zhou, Sci. Rep. 7, 42767 (2017).

    Article  ADS  Google Scholar 

  24. M. C. Duch, G. R. S. Budinger, Y. T. Liang, S. Soberanes, D. Urich, S. E. Chiarella, L. A. Campochiaro, A. Gonzalez, N. S. Chandel, M. C. Hersam, and G. M. Mutlu, Nano Lett. 11, 5201 (2011).

    Article  ADS  Google Scholar 

  25. K. H. Liao, Y. S. Lin, C. W. Macosko, and C. L. Haynes, ACS Appl. Mater. Interfaces 3, 2607 (2011).

    Article  Google Scholar 

  26. R. Li, L. M. Guiney, C. H. Chang, N. D. Mansukhani, Z. Ji, X. Wang, Y. P. Liao, W. Jiang, B. Sun, M. C. Hersam, A. E. Nel, and T. Xia, ACS Nano 12, 1390 (2018).

    Article  Google Scholar 

  27. Y. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang, M. Castelli, Z. Liu, Q. Huang, C. Fan, H. Fang, and R. Zhou, Nat. Nanotech. 8, 594 (2013).

    Article  ADS  Google Scholar 

  28. A. C. F. Ip, B. Liu, P. J. J. Huang, and J. Liu, Small 9, 1030 (2013).

    Article  Google Scholar 

  29. M. Crowe, Y. Lai, Y. Wang, J. Lu, M. Zhao, Z. Tian, J. Long, P. Zhang, and J. Diao, Small Methods 1, 1700207 (2017).

    Article  Google Scholar 

  30. I. Zucker, J. R. Werber, Z. S. Fishman, S. M. Hashmi, U. R. Gabinet, X. Lu, C. O. Osuji, L. D. Pfefferle, and M. Elimelech, Environ. Sci. Technol. Lett. 4, 404 (2017).

    Article  Google Scholar 

  31. J. Mao, R. Guo, and L. T. Yan, Biomaterials 35, 6069 (2014).

    Article  Google Scholar 

  32. R. Guo, J. Mao, and L. T. Yan, Biomaterials 34, 4296 (2013).

    Article  Google Scholar 

  33. J. Chen, G. Zhou, L. Chen, Y. Wang, X. Wang, and S. Zeng, J. Phys. Chem. C 120, 6225 (2016).

    Article  Google Scholar 

  34. W. Yang, H. T. Wang, T. F. Li, and S. X. Qu, Sci. China-Phys. Mech. Astron. 62, 014601 (2019).

    Article  Google Scholar 

  35. J. Chen, B. Yao, C. Li, and G. Shi, Carbon 64, 225 (2013).

    Article  Google Scholar 

  36. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Nano Lett. 8, 2012 (2008).

    Article  ADS  Google Scholar 

  37. M. Kyoung, A. Srivastava, Y. Zhang, J. Diao, M. Vrljic, P. Grob, E. Nogales, S. Chu, and A. T. Brunger, Proc. Natl. Acad. Sci. USA 108, E304 (2011).

    Google Scholar 

  38. Y. Lai, J. Diao, Y. Liu, Y. Ishitsuka, Z. Su, K. Schulten, T. Ha, and Y. K. Shin, Proc. Natl. Acad. Sci. USA 110, 1333 (2013).

    Article  ADS  Google Scholar 

  39. J. Gong, Y. Lai, X. Li, M. Wang, J. Leitz, Y. Hu, Y. Zhang, U. B. Choi, D. Cipriano, R. A. Pfuetzner, T. C. Südhof, X. Yang, A. T. Brunger, and J. Diao, Proc. Natl. Acad. Sci. USA 113, E7590 (2016).

    Google Scholar 

  40. Y. Lai, U. B. Choi, Y. Zhang, M. Zhao, R. A. Pfuetzner, A. L. Wang, J. Diao, and A. T. Brunger, Proc. Natl. Acad. Sci. USA 113, E4698 (2016).

    Google Scholar 

  41. Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R. H. Hurt, A. B. Kane, and H. Gao, Proc. Natl. Acad. Sci. USA 110, 12295 (2013).

    Article  ADS  Google Scholar 

  42. Y. Li, X. Li, Z. Li, and H. Gao, Nanoscale 4, 3768 (2012).

    Article  ADS  Google Scholar 

  43. L. Zhang, M. Becton, and X. Wang, J. Phys. Chem. B 119, 3786 (2015).

    Article  Google Scholar 

  44. X. Qiang, X. Wang, Y. Ji, S. Li, and L. He, Polymer 115, 1 (2017).

    Article  Google Scholar 

  45. M. Venturoli, B. Smit, and M. M. Sperotto, Biophys. J. 88, 1778 (2005).

    Article  Google Scholar 

  46. L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, J. Comput. Chem. 30, 2157 (2009).

    Article  Google Scholar 

  47. L. T. Yan, and X. Yu, Nanoscale 3, 3812 (2011).

    Article  ADS  Google Scholar 

  48. J. C. Shillcock, and R. Lipowsky, Nat. Mater. 4, 225 (2005).

    Article  ADS  Google Scholar 

  49. P. J. Hoogerbrugge, and J. M. V. A. Koelman, Europhys. Lett. 19, 155 (1992).

    Article  ADS  Google Scholar 

  50. R. D. Groot, and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).

    Article  ADS  Google Scholar 

  51. K. A. Smith, D. Jasnow, and A. C. Balazs, J. Chem. Phys. 127, 084703 (2007).

    Article  ADS  Google Scholar 

  52. X. Li, Y. Liu, L. Wang, M. Deng, and H. Liang, Phys. Chem. Chem. Phys. 11, 4051 (2009).

    Article  Google Scholar 

  53. N. Arai, K. Yasuoka, and X. C. Zeng, Nanoscale 5, 9089 (2013).

    Article  ADS  Google Scholar 

  54. A. Maiti, and S. McGrother, J. Chem. Phys. 120, 1594 (2004).

    Article  ADS  Google Scholar 

  55. A. Alexeev, W. E. Uspal, and A. C. Balazs, ACS Nano 2, 1117 (2008).

    Article  Google Scholar 

  56. H. M. Ding, and Y. Q. Ma, Nanoscale 4, 1116 (2012).

    Article  ADS  Google Scholar 

  57. S. Plimpton, J Comput Phys 117, 1 (1995).

    Article  ADS  Google Scholar 

  58. A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B 102, 4477 (1998).

    Article  Google Scholar 

  59. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, Adv. Mater. 22, 4467 (2010).

    Article  Google Scholar 

  60. C. Gomez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, Nano Lett. 10, 1144 (2010).

    Article  ADS  Google Scholar 

  61. D. Pacilé, J. C. Meyer, A. Fraile Rodríguez, M. Papagno, C. Gómez- Navarro, R. S. Sundaram, M. Burghard, K. Kern, C. Carbone, and U. Kaiser, Carbon 49, 966 (2011).

    Article  Google Scholar 

  62. J. Yang, G. Shi, Y. Tu, and H. Fang, Angew. Chem. Int. Ed. 53, 10190 (2014).

    Article  Google Scholar 

  63. S. Pei, and H. M. Cheng, Carbon 50, 3210 (2012).

    Article  Google Scholar 

  64. A. V. Titov, P. Král, and R. Pearson, ACS Nano 4, 229 (2009).

    Article  Google Scholar 

  65. M. Dallavalle, M. Calvaresi, A. Bottoni, M. Melle-Franco, and F. Zerbetto, ACS Appl. Mater. Interfaces 7, 4406 (2015).

    Article  Google Scholar 

  66. J. Wang, Y. Wei, X. Shi, and H. Gao, RSC Adv. 3, 15776 (2013).

    Article  Google Scholar 

  67. W. Zhu, A. von dem Bussche, X. Yi, Y. Qiu, Z. Wang, P. Weston, R. H. Hurt, A. B. Kane, and H. Gao, Proc. Natl. Acad. Sci. USA 113, 12374 (2016).

    Article  ADS  Google Scholar 

  68. A. A. Gurtovenko, and I. Vattulainen, J. Phys. Chem. B 111, 13554 (2007).

    Article  Google Scholar 

  69. W. F. D. Bennett, J. L. MacCallum, M. J. Hinner, S. J. Marrink, and D. P. Tieleman, J. Am. Chem. Soc. 131, 12714 (2009).

    Article  Google Scholar 

  70. M. Nakano, M. Fukuda, T. Kudo, N. Matsuzaki, T. Azuma, K. Sekine, H. Endo, and T. Handa, J. Phys. Chem. B 113, 6745 (2009).

    Article  Google Scholar 

  71. Q. Hu, B. Jiao, X. Shi, R. P. Valle, Y. Y. Zuo, and G. Hu, Nanoscale 7, 18025 (2015).

    Article  ADS  Google Scholar 

  72. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dékány, Chem. Mater. 18, 2740 (2006).

    Article  Google Scholar 

  73. O. C. Compton, and S. B. T. Nguyen, Small 6, 711 (2010).

    Article  Google Scholar 

  74. K. Andre Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Nano Lett. 9, 1058 (2009).

    Article  ADS  Google Scholar 

  75. D. Luo, G. Zhang, J. Liu, and X. Sun, J. Phys. Chem. C 115, 11327 (2011).

    Article  Google Scholar 

  76. S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal, C. Berger, W. de Heer, A. Bongiorno, and E. Riedo, Nat. Mater. 11, 544 (2012).

    Article  ADS  Google Scholar 

  77. R. Raj, S. C. Maroo, and E. N. Wang, Nano Lett. 13, 1509 (2013).

    Article  ADS  Google Scholar 

  78. Q. Mu, G. Su, L. Li, B. O. Gilbertson, L. H. Yu, Q. Zhang, Y. P. Sun, and B. Yan, ACS Appl. Mater. Interfaces 4, 2259 (2012).

    Article  Google Scholar 

  79. L. Hui, J. G. Piao, J. Auletta, K. Hu, Y. Zhu, T. Meyer, H. Liu, and L. Yang, ACS Appl. Mater. Interfaces 6, 13183 (2014).

    Article  Google Scholar 

  80. B. G. Monasterio, B. Alonso, J. Sot, A. B. García-Arribas, D. Gil- Cartón, M. Valle, A. Zurutuza, and F. M. Goñi, Langmuir 33, 8181 (2017).

    Article  Google Scholar 

  81. A. D. Petelska, and Z. A. Figaszewski, Biophys. J. 78, 812 (2000).

    Article  Google Scholar 

  82. M. A. Idiart, and Y. Levin, Phys. Rev. E 69, 061922 (2004).

    Article  ADS  Google Scholar 

  83. A. D. Petelska, Cent. Eur. J. Chem. 10, 16 (2012).

    Article  Google Scholar 

  84. E. Evans, and V. Heinrich, C. R. Physique 4, 265 (2003).

    Article  ADS  Google Scholar 

  85. E. Evans, V. Heinrich, F. Ludwig, and W. Rawicz, Biophys. J. 85, 2342 (2003).

    Article  Google Scholar 

  86. H. Leontiadou, A. E. Mark, and S. J. Marrink, Biopshys. J. 86, 2156 (2004).

    Article  Google Scholar 

  87. B. Bu, Z. Tian, D. Li, and B. Ji, Front. Mol. Neurosci. 9, 136 (2016).

    Article  Google Scholar 

  88. L. T. Yan, and X. Yu, ACS Nano 3, 2171 (2009).

    Article  Google Scholar 

  89. C. E. Morris, and U. Homann, J. Membr. Biol. 179, 79 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DeChang Li, Lei Zhang, JiaJie Diao or BaoHua Ji.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhai, X., Crowe, M. et al. Heterogeneous oxidization of graphene nanosheets damages membrane. Sci. China Phys. Mech. Astron. 62, 64611 (2019). https://doi.org/10.1007/s11433-018-9317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9317-7

Keywords

Navigation